Fen Bilimleri Enstitüsü / Science Institute

Permanent URI for this collectionhttps://hdl.handle.net/11727/1392

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Uzaklık ve cinsiyet tabanlı akıllı reklam görüntüleme sistemi
    (Başkent Üniversitesi Fen Bilimleri Enstitüsü, 2018) Kabasakal, Burak; Sümer, Emre
    Son yirmi yılda artan teknolojik gelişmelere paralel olarak örüntü tanıma ve bilgisayarlı görme alanlarını kullanan ve gündelik hayata entegre olan birçok çalışma ve araştırma bulunmaktadır. Bu tezde, gerçek zamanlı olarak kamera kaynağından alınan yayın üzerinde tespit edilen yüz görüntülerinden elde edilen cinsiyet bilgisine ve kameraya uzaklığına bağlı olarak çalışan akıllı reklam görüntüleme sistemi geliştirilmiştir. Sistem temelde iki ayrı kısımdan oluşmaktadır. İlk kısımda kamera kaynağından alınan veriler, canlı yayındaki çerçeveler işlendikten sonra algılanan yüzlerden cinsiyet tespiti ve uzaklık kestirimi yapılarak canlı yayına eklenmektedir. Sistemin ikinci kısmında ise algılanan yüze ait resim, cinsiyet etiketi ve kameraya uzaklık bilgisi reklam bilgisinin gösterileceği uygulamaya web servis yolu ile iletilip, veritabanına kaydedilmektedir. Sistem için önceden tanımlanmış süre içerisinde veritabanında bulunan yüz ve uzaklık bilgileri analiz edilerek farklı detay seviyelerinde reklam gösterimi yapılmaktadır. Analiz işleminde, sistem için tanımlanmış süre zarfında veritabanından elde edilen veriler doğrultusunda cinsiyet ve uzaklığa bağlı olarak farklı ilgi seviyelerinde reklam gösterimi gerçekleştirilmektedir. Sistemin verimli çalışması için cinsiyet tespitinin doğru yapılması oldukça önem arz etmektedir. Çalışmada, geliştirilen yüz algılama sınıflandırıcısıyla beraber cinsiyet tespit işlemi için Fisher Yüz Algoritması (Fisherfaces), Destek Vektör Makineleri (SVM) ve Evrişimsel Sinir Ağları (CNN) sınıflandırıcıları kullanılmıştır. SVM sınıflandırıcısındaki doğruluk yüzdesini arttırmak için Yerel İkili Örüntü (LBP) ve Yönlü Gradyanlar Histogramı (HOG) öznitelik çıkarım yöntemleri kullanılmıştır.Derin öğrenme yöntemlerinin en popülerlerinden biri olan CNN ağ çeşidi GoogleNet mimarisi ile eğitilmiştir. Sınıflandırıcılar için günlük hayat akışına uygun olarak belirlenmiş LFW, IMDB ve WIKI veri kümeleri eğitim için, FaceScrub veri kümesi ise test veri kümesi olarak kullanılmıştır. Cinsiyet tespiti için geliştirilen SVM ve CNN sınıflandırıcıları üzerinde gerekli optimizasyon çalışmaları yapılmıştır. Fisher Yüz algoritması ile %61.30, SVM sınıflandırıcısının LBP ve HOG öznitelik çıkarım yöntemleri ile sırasıyla %75.32 ve %80.58, CNN sınıflandırıcısı ile %94.76’lık başarı elde edilmiştir. The vast number of researchers have been focused on pattern recognition and computer vision fields in parallel with recent technological developments over the last two decades. Studies on these subjects have become widespread in recent years. In this thesis, a smart advertisement display system has been developed which feeds real time data from the camera source to get gender information and calculate distance from the camera source. The developed system has two main stages. Firstly, live broadcast stream, which gets data from the camera source, is handled frame by frame. Then, the face detection part is employed for predicting the gender and distance information. Secondly, detected face images along with the gender labels and distance values are sent to the advertisement display application via the web service and saved into the database. The advertisement system is run in a time counter and analyses the records from the database. The analysis process is based on statistical information such as gender label and distance value to determine advertisements having different levels of detail. Determination of gender information is very important for proper system operation. For this study, face detection and gender recognition classifiers were implemented. Fisherfaces, Support Vector Machines (SVM) and Convolutional Neural Networks (CNN) classifiers for gender recognition were trained. The SVM classifier with Local Binary Pattern (LBP) and Histogram of Oriented Gradients (HOG) features were used at different times. Besides, various optimization works were performed by changing the parameters. One of the most popular deep learning methods, the CNN network type, was trained with GoogleNet architecture and the optimization was performed depending on the parameters. The LFW, IMDB and WIKI were used as training data sets and the FaceScrub was used as the test data set. Fisherfacesalgorithm yielded an accuracy of 61.30%. When LBP feature extraction method is combined with SVM classifier, the accuracy rate of 75.32% was reached. The HOG feature extraction method with SVM was found to be more successful than LBP and reached an accuracy of 80.58%. Finally, CNN was determined to be the best classifier among all having an accuracy rate of 94.76%.
  • Thumbnail Image
    Item
    Adli uygulamalar için ses içerik analizi
    (Başkent Üniversitesi Fen Bilimleri Enstitüsü, 2018) Sarman, Sercan; Sert, Mustafa
    Günümüzde artan şiddet olayları, adli incelemelerin de önemini artırmıştır. Şiddet olaylarının ardından gerçekleştirilecek olan adli incelemeler esnasında, erişilebilir durumda olan bütün işitsel ve görsel veriler oldukça kıymetlidir. Olayın gerçekleştiği konumun tespit edilmesi, şiddetin türünün belirlenmesi ve benzeri süreçler, adli ses analizi kapsamında yer almaktadır. Günümüzde çevrimiçi içeriğe erişimin akıllı cihazlar aracılığıyla konum bağımsız olarak gerçekleştirilebiliyor olması ve sunulan içeriğin miktarının hızlı bir şekilde artmasıyla; içeriğin otomatik olarak sınıflandırılmasının önemini artırmıştır. Özellikle çocuk ve gençleri olumsuz olarak etkileyebilecek içeriğin otomatik olarak tespit edilmesi, içerik miktarının hızlı artışıyla birlikte önem kazanmıştır. Buna karşılık, sinyal işleme alanında, özellikle de adli ses analizi kapsamında gerçekleştirilen çalışmaların başarımı, diğer alanlarda kullanılan makine öğrenmesi yöntemlerinin şiddet sahnesi sınıflandırması alanına uygulanabileceğini göstermiştir. Bu tez çalışması kapsamında, silah seslerinin ve video verilerinin şiddet içeren sahnelerinin ses tabanlı sınıflandırılması problemleri ele alınmıştır. Bu amaçla, makine öğrenmesi metotlarının ve topluluk öğrenmesi yaklaşımları probleme uygulanmıştır. Yöntemler, performans veri kümeleri üzerinde karşılaştırmalı olarak incelenmiş ve silah sesleri sınıflandırılması alanında %66, şiddet sahnesi sınıflandırması alanında %62'ye varan sınıflandırma başarımları elde edilmiştir. Nowadays, the increase in violent events has enhanced the importance of forensic investigations. All accessible auditory and visual data are highly valuable during the examination to be performed after violent events. Audio forensics analysis contains determination of location in which violent incident occur and determination of type of violence. Recently, the location-free and easier access to online content via smart devices and the increase of content have enhanced the importance of automatical classification of content. With the rapid growth in the amount of content, it has become crucial to automatically determine the content that can adversely affect children and youth. On the other hand, the success of the studies carried out in the field of signal processing, especially in the context of audio forensic analysis, shows that the methods of machine learning used in other areas can be applied to the field of violent scene classification. In this study, we study the problem of gunshot sounds and violent scene classification. For this purpose, machine learning and ensemble learning approaches applied to this problem. We examine classification rates of various machine learning and ensemble learning approaches comperatively and we achieve classification accuracies of 66% and 62% in audio gunshot classification and violent scene classification, respectively.