A Novel Deep Learning Algorithm for the Automatic Detection of High-Grade Gliomas on T2-Weighted Magnetic Resonance I mages: A Preliminary Machine Learning Study

dc.contributor.authorAtici, Mehmet Ali
dc.contributor.authorSagiroglu, Seref
dc.contributor.authorCeltikci, Pinar
dc.contributor.authorUcar, Murat
dc.contributor.authorBorcek, Alp Ozgun
dc.contributor.authorEmmez, Hakan
dc.contributor.authorCeltikci, Emrah
dc.contributor.orcID0000-0002-1655-6957en_US
dc.contributor.pubmedID31608975en_US
dc.date.accessioned2021-06-30T17:18:27Z
dc.date.available2021-06-30T17:18:27Z
dc.date.issued2020
dc.description.abstractAIM: To propose a convolutional neural network (CNN) for the automatic detection of high-grade gliomas (HGGs) on T2-weighted magnetic resonance imaging (MRI) scans. MATERIAL and METHODS: A total of 3580 images obtained from 179 individuals were used for training and validation. After random rotation and vertical flip, training data was augmented by factor of 10 in each iteration. In order to increase data processing time, every single image converted into a Jpeg image which has a resolution of 320x320. Accuracy, precision and recall rates were calculated after training of the algorithm. RESULTS: Following training, CNN achieved acceptable performance ratios of 0.854 to 0.944 for accuracy, 0.812 to 0.980 for precision and 0.738 to 0.907 for recall. Also, CNN was able to detect HGG cases even though there is no apparent mass lesion in the given image. CONCLUSION: Our preliminary findings demonstrate; currently proposed CNN model achieves acceptable performance results for the automatic detection of HGGs on T2-weighted images.en_US
dc.identifier.endpage205en_US
dc.identifier.issn1019-5149en_US
dc.identifier.issue2en_US
dc.identifier.startpage199en_US
dc.identifier.urihttp://turkishneurosurgery.org.tr/pdf/pdf_JTN_2293.pdf
dc.identifier.urihttp://hdl.handle.net/11727/6210
dc.identifier.volume30en_US
dc.identifier.wos000519545800008en_US
dc.language.isoengen_US
dc.relation.isversionof10.5137/1019-5149.JTN.27106-19.2en_US
dc.relation.journalTURKISH NEUROSURGERYen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectDeep learningen_US
dc.subjectGliomaen_US
dc.subjectMachine learningen_US
dc.subjectMagnetic resonance imagingen_US
dc.titleA Novel Deep Learning Algorithm for the Automatic Detection of High-Grade Gliomas on T2-Weighted Magnetic Resonance I mages: A Preliminary Machine Learning Studyen_US
dc.typearticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
pdf_JTN_2293.pdf
Size:
1.04 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: