Sensitive And Cost-Effective Boron Doped Diamond And Fe2O3/Chitosan Nanocomposite Modified Glassy Carbon Electrodes For The Trace Level Quantification Of Anti-Diabetic Dapagliflozin Drug

dc.contributor.authorOzkan, Ece
dc.contributor.authorCetinkaya, Ahmet
dc.contributor.authorOzcelikay, Goksu
dc.contributor.authorNemutlu, Emirhan
dc.contributor.authorKir, Sedef
dc.contributor.authorOzkan, Sibel A.
dc.contributor.orcIDhttps://orcid.org/0000-0001-5014-0907en_US
dc.contributor.researcherIDAAF-6076-2019en_US
dc.date.accessioned2022-11-22T10:20:11Z
dc.date.available2022-11-22T10:20:11Z
dc.date.issued2022
dc.description.abstractDapagliflozin (DPG), used in the treatment of type 2 diabetes, is a drug widely used to treat type 1 diabetes with certain restrictions. Hypoglycemia, urinary tract, genital infections, and decreased body water are among the common side effects of DPG. The detailed electrochemical oxidation process of DPG at both electrodes was investigated using cyclic voltammetry. The bare boron-doped diamond electrode (BDDE) showed a diffusion-controlled process, while the glassy carbon electrode (GCE) was an adsorption-controlled process. Using iron (III) oxide/Chitosan nanocomposite showed (Fe2O3/Chitosan NCs) as the modification agent for the GCE, a highly sensitive and selective nanosensor was created for the DPG assay. Fe2O3/Chitosan NCs modified GC, and bare BDD electrodes were successfully applied for the electrochemical determination of DPG. The simple, eco-friendly, sensitive, and time-saving electroanalytical methods have been developed for the determination of DPG in urine, serum, and tablet samples using differential pulse (DPV) and adsorptive stripping differential pulse voltammetric (AdSDPV) methods with a BDDE and the proposed nanosensor (Fe2O3/Chitosan NCs modified GCE) in 0.1 M H2SO4 containing 20% methanol, respectively. Under optimized conditions, the developed methods gave detection limits of 2.0 nM and 15 nM and linear range of 0.1-8.0 mu M and 0.6-80.0 mu M for Fe2O3/Chitosan NCs modified GCE and BDDE, respectively. Both electrodes showed excellent recoveries (between 97.25 and 102.68 %) and repeatability with RSD lower than 2.4% (n = 5). The developed methods were successfully applied for the analysis of DPG in serum, urine, and pharmaceutical dosage forms.en_US
dc.identifier.issn1572-6657en_US
dc.identifier.scopus2-s2.0-85123888345en_US
dc.identifier.urihttp://hdl.handle.net/11727/8141
dc.identifier.volume908en_US
dc.identifier.wos000767865600012en_US
dc.language.isoengen_US
dc.relation.isversionof10.1016/j.jelechem.2022.116092en_US
dc.relation.journalJOURNAL OF ELECTROANALYTICAL CHEMISTRYen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDapagliflozinen_US
dc.subjectSolid electrodesen_US
dc.subjectNanosensorsen_US
dc.subjectVoltammetryen_US
dc.subjectValidationen_US
dc.titleSensitive And Cost-Effective Boron Doped Diamond And Fe2O3/Chitosan Nanocomposite Modified Glassy Carbon Electrodes For The Trace Level Quantification Of Anti-Diabetic Dapagliflozin Drugen_US
dc.typearticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: