Fakülteler / Faculties
Permanent URI for this communityhttps://hdl.handle.net/11727/1395
Browse
17 results
Search Results
Item Categorization Of Alzheimer's Disease Stages Using Deep Learning Approaches With Mcnemar's Test(Başkent Üniversitesi Mühendislik Fakültesi, 2024-03-13) Sener, Begum; Acici, Koray; Sumer, EmreEarly diagnosis is crucial in Alzheimer's disease both clinically and for preventing the rapid progression of the disease. Early diagnosis with awareness studies of the disease is of great importance in terms of controlling the disease at an early stage. Additionally, early detection can reduce treatment costs associated with the disease. A study has been carried out on this subject to have the great importance of detecting Alzheimer's disease at a mild stage and being able to grade the disease correctly. This study's dataset consisting of MRI images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) was split into training and testing sets, and deep learning -based approaches were used to obtain results. The dataset consists of three classes: Alzheimer's disease (AD), Cognitive Normal (CN), and Mild Cognitive Impairment (MCI). The achieved results showed an accuracy of 98.94% for CN vs AD in the one vs one (1 vs 1) classification with the EfficientNetB0 model and 99.58% for AD vs CNMCI in the one vs All (1 vs All) classification with AlexNet model. In addition, in the study, an accuracy of 98.42% was obtained with the EfficientNet121 model in MCI vs CN classification. These results indicate the significant potential for mild stage Alzheimer's disease detection of Alzheimer's disease. Early detection of the disease in the mild stage is a critical factor in preventing the progression of Alzheimer's disease. In addition, a variant of the non -parametric statistical McNemar's Test was applied to determine the statistical significance of the results obtained in the study. Statistical significance of 1 vs 1 and 1 vs all classifications were obtained for EfficientNetB0, DenseNet, and AlexNet models.Item Obstructive Sleep Apnea Classification with Artificial Neural Network Based On Two Synchronic Hrv Series(2015) Aksahin, Mehmet; Erdamar, Aykut; Firat, Hikmet; Ardic, Sadik; Erogul, Osman; 0000-0001-8588-480X; AAA-6844-2019In the present study, "obstructive sleep apnea (OSA) patients" and "non-OSA patients" were classified into two groups using with two synchronic heart rate variability (HRV) series obtained from electrocardiography (ECG) and photoplethysmography (PPG) signals. A linear synchronization method called cross power spectrum density (CPSD), commonly used on HRV series, was performed to obtain high-quality signal features to discriminate OSA from controls. To classify simultaneous sleep ECG and PPG signals recorded from OSA and non-OSA patients, various feed forward neural network (FFNN) architectures are used and mean relative absolute error (MRAE) is applied on FFNN results to show affectivities of developed algorithm. The FFNN architectures were trained with various numbers of neurons and hidden layers. The results show that HRV synchronization is directly related to sleep respiratory signals. The CPSD of the HRV series can confirm the clinical diagnosis; both groups determined by an expert physician can be 99% truly classified as a single hidden-layer FFNN structure with 0.0623 MRAE, in which the maximum and phase values of the CPSD curve are assigned as two features. In future work, features taken from different physiological signals can be added to define a single feature that can classify apnea without error.Item Classification of Different Objects with Artificial Neural Networks Using Electronic Nose(2015) Ozsandikcioglu, Umit; Atasoy, Ayten; Guney, Selda; 0000-0002-5397-6301; 0000-0003-1188-2902; 0000-0002-0573-1326; AAR-4368-2020; HJH-3630-2023; AAC-7404-2020In this paper; an e-nose with low cost which consisting of 8 different gas sensors was used and with this e-nose 9 different odors ((mint, lemon, egg, rotten egg, angelica root, nail polish, naphthalene, rose water, and acetone) was classified. This 9 different odor are classified with Artificial Neural Networks and by using different activation functions, and then the successes of the classification were compared with each other. The maximum success of the testing data is obtained with 100% accuracy rate by using logsig activation function in hidden layer and tansig activation function in output layer. In conclusion; using the chemical database containing the odor of the different objects, distinct odors were shown to be classified correctly.Item Effect of Polynomial, Radial Basis, and Pearson VII Function Kernels in Support Vector Machine Algorithm for Classification of Crayfish(2022) Garabaghi, Farid Hassanbaki; Benzer, Recep; Benzer, Semra; Gunal, Aysel Caglan; 0000-0002-5339-0554; A-5050-2014Freshwater crayfish are one of the most important aquatic organisms that play a pivotal role in the aquatic food chain as well as serving as bioindicators for the aquatic ecosystem health assessment. Hemocytes, the blood cells of crustaceans, can be considered stress and health indicators in crayfish, and are used to evaluate the health response. Therefore, total hemocyte cell numbers (THCs) are useful parameters to show the health of crustaceans and serve as stress indicators to decide the quality of the habitat. Since, catching the fish and the other aquatic organisms, and collecting the data for further assessments are time-consuming and frustrating, today, scientists tend to use swift, more sophisticated, and more reliable methods for modeling the ecosystem stressors based on bioindicators. One tool which has attracted the attention of science communities in the last decades is machine learning algorithms that are reliable and accurate methods to solve classification and regression problems. In this study, a support vector machine is carried out as a machine learning algorithm to classify healthy and unhealthy crayfish based on physiological characteristics. To solve the non-linearity problem of the data by transporting data to high-dimensional space, different kernel functions including polynomial (PK), Pearson VII function-based universal (PUK), and radial basis function (RBF) kernels are used and their effect on the performance of the SVM model was evaluated. Both PK and PUK functions performed well in classifying the crayfish. RBF, however, had an adverse impact on the performance of the model. PUK kernel exhibited an outstanding performance (Accu-racy = 100%) for the classification of the healthy and unhealthy crayfish.Item Detection of Visual Impairment From Retinal Fundus Images with Deep Learning(2022) Olcer, Didem; Erdas, Cagatay BerkeItem Using Machine Learning Methods in Early Diagnosis of Breast Cancer(2021) Erkal, Begum; Ayyildiz, Tulin Ercelebi; https://orcid.org/0000-0002-7372-0223; JBI-6492-2023Breast cancer is one of the most important health diseases to be treated in the world, and it is a subject that has a wide place in research subjects. In this study, results are provided by using seven different machine learning techniques for the classification of breast cancer. In order to obtain better results, the preprocessing method was applied. As a result, when compared with some studies in the literature, it was observed that the general performance of some of the methods improved. In the experimental results, BayesNet was found to be the best classification method with an accuracy rate of 97.13%.Item Context-Sensitive Model Learning for Lung Nodule Detection(2016) Ogul, B. Buket; Ogul, Hasan; Sumer, Emre; AGA-5711-2022Nodule detection in chest radiographs is a main component of current Computer Aided Diagnosis (CAD) systems. The problem is usually approached as a supervised classification task of candidate nodule segments. To this end, a discriminative model is learnt from predefined set of features. A key concern with this approach is the fact that some normal tissues are also imaged and these regions can overlap with the lung tissue as to hide the nodules. These overlaps may reduce the discriminative ability of extracted features and increase the number of false positives accordingly. In this study, we offer to learn distinct models for bone and normal tissue regions following to the segmentation of ribs, which are often the major reason for false positives. Thus, the nodule candidates in bone and normal tissue regions can be assessed in context-sensitive way. The experiments on a common benchmark set determine that the proposed approach can significantly recue the false positives while preserving the sensitivity of detections.Item Development of a MFCC-SVM Based Turkish Speech Recognition System(2016) Tombaloglu, Burak; Erdem, HamitIn this study, a SVM-MFCC based Turkish Speech Recognition system is devoloped. In the structure, Mel Frequency Cepstral Coefficients (MFCC) are used for feature extraction and Support Vector Machines(SVM) are used for classification of the phonemes. Three more phoneme recognition methods are applied to same dataset and their perfomance is compared. The applied methods are the combination of the Linear Prediction Cepstral Coefficients (LPCC), which is a commonly used method of feature extraction and Hidden Markov Method (HMM) which is a known classification method. The applied feature extraction and classification methods has been selected due to phoneme-based property of the Turkish language.Item Applications of Deep Learning Techniques to Wood Anomaly Detection(2022) Celik, Yaren; Guney, Selda; Dengiz, Berna; Xu, J; Altiparmak, F.; Hassan, MHA; Marquez, FPGWood products and structures have an important place in today's industry. They are widely used in many fields. However, there are various difficulties in production systems where wood raw material is under many processes. Some difficulty and complexity of production processes result in high variability of raw materials such as a wide range of visible structural defects that must be checked by specialists on line or of line. These issues are not only difficult and biased in manual processes, but also less effective and misleading. To overcome the drawbacks of the manual quality control processes, machine vision-based inspection systems are in great of interest recently for quality control applications. In this study, the wood anomaly has been detected by using deep learning. As it will be a distinction-based method on image processing, the Convolution Neural Network (CNN), which is one of the most suitable methods, has been used for anomaly detection. In addition, it will be tried to obtain the most suitable one among different CNN architectures such as ShuffleNet, AlexNet, GoogleNet for the problem. MobileNet, SqueezeNet, GoogleNet, ShuffleNet among considered methods show promising results in classifying normal and abnormal wood products.Item Deep neural network to differentiate brain activity between patients with euthymic bipolar disorders and healthy controls during verbal fluency performance: A multichannel near-infrared spectroscopy study(2022) Alici, Yasemin Hosgoren; Oztoprak, Huseyin; Rizaner, Nahit; Baskak, Bora; Ozguven, Halise Devrimci; 0000-0003-3384-8131; 36088826In this study, we aimed to differentiate between euthymic bipolar disorder (BD) patients and healthy controls (HC) based on frontal activity measured by fNIRS that were converted to spectrograms with Convolutional Neural Networks (CNN). And also, we investigated brain regions that cause this distinction. In total, 29 BD patients and 28 HCs were recruited. Their brain cortical activities were measured using fNIRS while performing letter versions of VFT. Each one of the 24 fNIRS channels was converted to a 2D spectrogram on which a CNN architecture was designed and utilized for classification. We found that our CNN algorithm using fNIRS activity during a VFT is able to differentiate subjects with BD from healthy controls with 90% accuracy, 80% sensitivity, and 100% specificity. Moreover, validation performance reached an AUC of 94%. From our individual channel analyses, we observed channels corresponding to the left inferior frontal gyrus (left-IFC), medial frontal cortex (MFC), right dorsolateral prefrontal cortex (DLPFC), Broca area, and right premotor have considerable activity variation to distinguish patients from HC. fNIRS activity during VFT can be used as a potential marker to classify euthymic BD patients from HCs. Activity particularly in the MFC, left-IFC, Broca's area, and DLPFC have a considerable variation to distinguish patients from healthy controls.