Investigation on the properties ofCu(2)ZnSnSe(4)andCu(2)ZnSn(S,Se)(4)absorber films prepared by magnetron sputtering technique usingZnandZnStargets in precursor stac

dc.contributor.authorAkcay, Neslihan
dc.contributor.authorGremenok, Valery Feliksovich
dc.contributor.authorZaretskaya, Ellen Petrovna
dc.contributor.authorOzcelik, Suleyman
dc.contributor.researcherIDABB-7017-2020en_US
dc.date.accessioned2021-04-29T07:41:56Z
dc.date.available2021-04-29T07:41:56Z
dc.date.issued2020
dc.description.abstractCu(2)ZnSnSe(4)and Cu2ZnSn(S,Se)(4)absorber films were grown on soda lime glass and Mo-coated soda lime glass substrates by deposition of the precursor films via RF magnetron sputtering method in the stacking orders of Cu/Sn/Zn/Mo/SLG and Cu/Sn/ZnS/Mo/SLG using metallic Zn or binary sulfide ZnS targets and subsequently carrying out of selenization process. It was aimed to find out the effect of Zn or ZnS target types and the small amount of S originated from ZnS target material used in the deposition of precursor films on the structural, morphological, optical, and electrical characteristics of the films to be selenized. XRD and Raman spectroscopy analysis showed that the kesterite CZTSe structure was predominantly formed in both cases where Zn and ZnS targets were used. According to the EDX analysis, S content in the prepared film using ZnS target was only around 1.79 at%. This indicated that a considerable amount of S in the film was driven out during the selenization process. Scanning electron microscopy analysis revealed that ZnS target material contributed to the achievement of the absorber films with larger grain size. It was also determined that the thickness of the interfacial MoSe(2)film between the absorber and Mo films decreased by using ZnS target in the precursor film. This was attributed to ZnS layer with a high melting point acting as a barrier layer over Mo film and retarding the diffusion of Se into the Mo film during the selenization process. In addition, the band gap energy values of the Cu(2)ZnSnSe(4)and Cu2ZnSn(S,Se)(4)films were found to be 1.18 and 1.28 eV, respectively.en_US
dc.identifier.endpage2415en_US
dc.identifier.issn0363-907Xen_US
dc.identifier.issue2en_US
dc.identifier.startpage2398en_US
dc.identifier.urihttp://hdl.handle.net/11727/5815
dc.identifier.volume45en_US
dc.identifier.wos000574041900001en_US
dc.language.isoengen_US
dc.relation.isversionof10.1002/er.5935en_US
dc.relation.journalINTERNATIONAL JOURNAL OF ENERGY RESEARCHen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCu(2)Sesecondary phaseen_US
dc.subjectCu2ZnSnSe4en_US
dc.subjectMoSe2en_US
dc.subjectselenizationen_US
dc.subjectthin film solar cellsen_US
dc.subjectZnandZnStargetsen_US
dc.titleInvestigation on the properties ofCu(2)ZnSnSe(4)andCu(2)ZnSn(S,Se)(4)absorber films prepared by magnetron sputtering technique usingZnandZnStargets in precursor stacen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: