On The Cop Number of Sierpinski-Like Graphs
| dc.contributor.author | Cakmak, Nazlican | |
| dc.contributor.author | Akyar, Emrah | |
| dc.date.accessioned | 2025-03-19T09:15:23Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | In this study, the cops and robber game is transferred to the Sierpinski graph, Sierpinski-like graphs S+(n,k) and S++(n,k), Sierpinski gasket graph Sn, and generalized Sierpinski graphs S(n,G) where G has an order four and S(n,C-k). We show that the cop number of these graphs is 2, excluding S++. We also give a strategy for the cops to win. | |
| dc.identifier.issn | 1793-8309 | |
| dc.identifier.scopus | 2-s2.0-85162741096 | |
| dc.identifier.uri | https://hdl.handle.net/11727/12500 | |
| dc.identifier.wos | 000995693200001 | |
| dc.language.iso | en_US | |
| dc.publisher | DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS | |
| dc.subject | Sierpinski graphs | |
| dc.subject | Cops and Robber | |
| dc.subject | cop number | |
| dc.subject | VERTEX | |
| dc.title | On The Cop Number of Sierpinski-Like Graphs | |
| dc.type | Article |