Goodness-of-fit and Randomness Tests for the Sun's Emissions True Random Number Generator

dc.contributor.authorTanyer, Suleyman Gokhun
dc.contributor.authorAtalay, Kumru Didem
dc.contributor.authorInam, Sitki Cagdas
dc.contributor.orcID0000-0003-0820-9186en_US
dc.contributor.researcherIDI-5023-2013en_US
dc.contributor.researcherIDJHU-3888-2023en_US
dc.date.accessioned2024-03-20T11:47:08Z
dc.date.available2024-03-20T11:47:08Z
dc.date.issued2014
dc.description.abstractRandom number generators ( RNGs) are one of the key tools necessary for statistical analysis and optimization methods such as Monte Carlo, particle swarm optimization ( PSO) and the genetic algorithm. Various pseudo and true RNGs are available today, and they provide sufficient randomness. Unfortunately, they generate data that do not always represent the required distribution accurately, especially when the data length is small. This could possibly threaten the 'repeatability' of an academic study. A novel true RNG ( TRNG) using the method of uniform sampling ( MUS) is recently proposed. In this work, the Sun's RF emissions MUS-TRNG is comparatively tested with well known pseudo and true RNGs. It is observed that both randomness and very high goodness-of-fit qualities are possible.en_US
dc.identifier.endpage218en_US
dc.identifier.isbn978-1-4799-4324-1en_US
dc.identifier.startpage216en_US
dc.identifier.urihttp://hdl.handle.net/11727/11902
dc.identifier.wos000380446200036en_US
dc.language.isoengen_US
dc.relation.isversionof10.1109/MCSI.2014.48en_US
dc.relation.journalInternational Conference on Mathematics and Computers in Sciences and in Industry (MCSI)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectrandom number generatoren_US
dc.subjectstatistical signal processingen_US
dc.subjectprobabilityen_US
dc.subjecttest statisticsen_US
dc.subjectoptimizationen_US
dc.titleGoodness-of-fit and Randomness Tests for the Sun's Emissions True Random Number Generatoren_US
dc.typeconferenceObjecten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: