Efficient Bag of Words Based Concept Extraction for Visual Object Retrieval

dc.contributor.authorErgun, Hilal
dc.contributor.authorSert, Mustafa
dc.contributor.orcIDhttps://orcid.org/0000-0002-7056-4245en_US
dc.contributor.researcherIDAAB-8673-2019en_US
dc.date.accessioned2023-07-19T11:17:30Z
dc.date.available2023-07-19T11:17:30Z
dc.date.issued2016
dc.description.abstractRecent burst of multimedia content available on Internet is pushing expectations on multimedia retrieval systems to even higher grounds. Multimedia retrieval systems should offer better performance both in terms of speed and memory consumption while maintaining good accuracy compared to state-of-the-art implementations. In this paper, we discuss alternative implementations of visual object retrieval systems based on popular bag of words model and show optimal selection of processing steps. We demonstrate our offering using both keyword and example-based retrieval queries on three frequently used benchmark databases, namely Oxford, Paris and Pascal VOC 2007. Additionally, we investigate effect of different distance comparison metrics on retrieval accuracy. Results show that, relatively simple but efficient vector quantization can compete with more sophisticated feature encoding schemes together with the adapted inverted index structure.en_US
dc.identifier.endpage402en_US
dc.identifier.isbn978-3-319-26154-6en_US
dc.identifier.issn2194-5357en_US
dc.identifier.scopus2-s2.0-84983132652en_US
dc.identifier.startpage389en_US
dc.identifier.urihttp://hdl.handle.net/11727/9980
dc.identifier.volume400en_US
dc.identifier.wos000369164600030en_US
dc.language.isoengen_US
dc.relation.isversionof10.1007/978-3-319-26154-6_30en_US
dc.relation.journalFLEXIBLE QUERY ANSWERING SYSTEMS 2015en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBag of wordsen_US
dc.subjectVisual Object Retrievalen_US
dc.subjectDistance metricsen_US
dc.subjectSIFTen_US
dc.titleEfficient Bag of Words Based Concept Extraction for Visual Object Retrievalen_US
dc.typeConference Objecten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: