Video Scene Classification Using Spatıal Pyramid Based Features

dc.contributor.authorSert, Mustafa
dc.contributor.authorErgun, Hilal
dc.contributor.orcIDhttps://orcid.org/0000-0002-7056-4245en_US
dc.contributor.researcherIDAAB-8673-2019en_US
dc.date.accessioned2023-11-10T13:30:50Z
dc.date.available2023-11-10T13:30:50Z
dc.date.issued2014
dc.description.abstractRecognition of video scenes is a challenging problem due to the unconstrained structure of the video content. Here, we propose a spatial pyramid based method for the recognition of video scenes and explore the effect of parameter optimization to the recognition accuracy. In the experiments different sampling methods, dictionary sizes, kernel methods, and pyramid levels are examined. Support Vector Machine (SVM) is employed for classification due to the success in pattern recognition applications. Our experiments show that, the size of dictionary and proper pyramid levels in feature representation drastically enhance the recognition accuracy.en_US
dc.identifier.endpage1949en_US
dc.identifier.issn2165-0608en_US
dc.identifier.scopus2-s2.0-84903755873en_US
dc.identifier.startpage1946en_US
dc.identifier.urihttp://hdl.handle.net/11727/10835
dc.identifier.wos000356351400466en_US
dc.language.isoturen_US
dc.relation.isversionof10.1109/SIU.2014.6830637en_US
dc.relation.journal2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectVideo scene recognitionen_US
dc.subjectspatial pyramiden_US
dc.subjectSVMen_US
dc.subjectbag-of-wordsen_US
dc.titleVideo Scene Classification Using Spatıal Pyramid Based Featuresen_US
dc.typeBook chapteren_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: