Video Scene Classification Using Spatıal Pyramid Based Features
| dc.contributor.author | Sert, Mustafa | |
| dc.contributor.author | Ergun, Hilal | |
| dc.contributor.orcID | https://orcid.org/0000-0002-7056-4245 | en_US |
| dc.contributor.researcherID | AAB-8673-2019 | en_US |
| dc.date.accessioned | 2023-11-10T13:30:50Z | |
| dc.date.available | 2023-11-10T13:30:50Z | |
| dc.date.issued | 2014 | |
| dc.description.abstract | Recognition of video scenes is a challenging problem due to the unconstrained structure of the video content. Here, we propose a spatial pyramid based method for the recognition of video scenes and explore the effect of parameter optimization to the recognition accuracy. In the experiments different sampling methods, dictionary sizes, kernel methods, and pyramid levels are examined. Support Vector Machine (SVM) is employed for classification due to the success in pattern recognition applications. Our experiments show that, the size of dictionary and proper pyramid levels in feature representation drastically enhance the recognition accuracy. | en_US |
| dc.identifier.endpage | 1949 | en_US |
| dc.identifier.issn | 2165-0608 | en_US |
| dc.identifier.scopus | 2-s2.0-84903755873 | en_US |
| dc.identifier.startpage | 1946 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11727/10835 | |
| dc.identifier.wos | 000356351400466 | en_US |
| dc.language.iso | tur | en_US |
| dc.relation.isversionof | 10.1109/SIU.2014.6830637 | en_US |
| dc.relation.journal | 2014 22ND SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU) | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Video scene recognition | en_US |
| dc.subject | spatial pyramid | en_US |
| dc.subject | SVM | en_US |
| dc.subject | bag-of-words | en_US |
| dc.title | Video Scene Classification Using Spatıal Pyramid Based Features | en_US |
| dc.type | Book chapter | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: