Reduced-Order Modeling For Heston Stochastic Volatility Model

dc.contributor.authorKozpinar, Sinem
dc.contributor.authorUzunca, Murat
dc.contributor.authorKarasozen, Bulent
dc.date.accessioned2025-04-10T06:43:13Z
dc.date.issued2024
dc.description.abstractIn this paper, we compare the intrusive proper orthogonal decomposition (POD) with Galerkin projection and the data-driven dynamic mode decomposition (DMD), for Heston's option pricing model. The full order model is obtained by discontinuous Galerkin discretization in space and backward Euler in time. Numerical results for butterfly spread, European and digital call options reveal that in general DMD requires more modes than the POD modes for the same level of accuracy. However, the speed-up factors are much higher for DMD than POD due to the non-intrusive nature of the DMD.
dc.identifier.issn2651-477X
dc.identifier.scopus2-s2.0-85215296475
dc.identifier.urihttps://hdl.handle.net/11727/12831
dc.identifier.wos001385922500002
dc.language.isoen_US
dc.publisherHACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS
dc.subjectdynamic mode decomposition
dc.subjectreduced-order modeling
dc.subjectproper orthogonal decomposition
dc.subjectdiscontinuous Galerkin method
dc.subjectHeston model
dc.subjectoption pricing
dc.titleReduced-Order Modeling For Heston Stochastic Volatility Model
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.15672-hujms.1066143-2224814.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: