Sequence Analysis to Predict Microrna Chemotherapy Resistance

dc.contributor.authorIgdeli, Muratcan
dc.contributor.authorYilmaz, Atif
dc.contributor.authorOgul, Hasan
dc.date.accessioned2023-06-19T11:09:37Z
dc.date.available2023-06-19T11:09:37Z
dc.date.issued2016
dc.description.abstractRecent findings suggest that microRNAs play important role in resistance to certain chemotherapies. The knowledge of what microRNAs are potentially resistant to given chemotherapies is therefore a crucial knowledge on drug design and therapy scheduling activities. In this study, we attempt to predict the list of microRNAs which are resistant to given drug using solely their mature sequence information. With this objective, we employ three common approaches for sequence classification in bioinformatics, i.e. pairwise, generative and discriminative models. The experimental results on a knowledge-driven dataset promote the use of pairwise models as a complementary tool in association studies for microRNAs and drugs.en_US
dc.identifier.endpage238en_US
dc.identifier.isbn978-150901353-1en_US
dc.identifier.scopus2-s2.0-85006001756en_US
dc.identifier.startpage234en_US
dc.identifier.urihttp://hdl.handle.net/11727/9685
dc.identifier.wos000391554300033en_US
dc.language.isoengen_US
dc.relation.isversionof10.1109/IS.2016.7737427en_US
dc.relation.journal8th IEEE International Conference on Intelligent Systems (IS)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmicroRNAen_US
dc.subjectchemotherapyen_US
dc.subjectresistanceen_US
dc.subjectpredicten_US
dc.titleSequence Analysis to Predict Microrna Chemotherapy Resistanceen_US
dc.typeConference Objecten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: