The Turkish lip reading using deep learning method
| dc.contributor.author | Berkol, Ali | |
| dc.date.accessioned | 2025-10-22T11:58:29Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | Automated lip reading is a research problem that has developed considerably in recent years. Lip reading is evaluated both visually and audibly in some cases. Detecting an unwanted word from a security camera is an example of a visual lip-reading problem. Audio-visual datasets are not applicable where such image-only data is involved. Therefore, we may not have audio input in all cases. In certain cases, it is not feasible to obtain the audio input of the spoken word. In this study, we have gathered a novel Turkish dataset consisting solely of images. The dataset was generated using YouTube videos, which constitute an uncontrolled environment. Consequently, the images present challenging parameters with respect to environmental factors such as lighting conditions, angles, colors, and individual facial characteristics. Despite the variations in facial attributes like mustaches, beards, and makeup, the visual speech recognition problem was addressed using Convolutional Neural Networks (CNN) without making any modifications to the data. The problem was formulated with 10 classes, comprising single words and two-word phrases. While developing the study, comparisons were made with LSTM, BGRU, and Dilated CNN. The proposed study using only-visual data obtained a model which is automated visual speech recognition with a deep learning approach. In addition, since this study uses only-visual data, the computational cost and resource usage is less than in multi-modal studies. Also, we introduce introduced a novel approach called Concatenated Frame Images, which involved combining image frames into a single large frame. It is also the first known study to address the lip reading problem with a deep learning algorithm using a new dataset belonging to the Ural-Altaic languages. Otomatik dudak okuma, son yıllarda önemli ölçüde gelişen bir araştırma problemidir. Dudak okuma bazen görsel olarak, bazen de işitsel olarak değerlendirilmektedir. Güvenlik kamerasından istenmeyen bir kelimenin tespiti, görsel dudak okuma problemine bir örnektir. İlgili birimler sadece görüntü verilerinin olduğu durumlarda işitme-görsel veri setlerinden yararlanamazlar. Bu nedenle, tüm durumlarda ses girdisine sahip olmak mümkün değildir. Telaffuz edilen kelimenin ses girişini her zaman elde etmek mümkün değildir. Bu çalışmada yalnızca görüntü kullanılarak yeni bir Türkçe veri seti toplandı. Yeni veri seti, kontrolsüz bir ortam olan Youtube videoları kullanılarak oluşturulmuştur. Bu nedenle, görüntüler ışık, açı, renk ve yüzün kişisel özellikleri gibi çevresel faktörler açısından zor parametrelere sahiptir. Bıyık, sakal ve makyaj gibi farklı yüz özelliklerine rağmen, görsel konuşma tanıma problemi, veri üzerinde herhangi bir müdahale olmadan Konvolüsyonel Sinir Ağları (CNN) kullanılarak tek kelime ve iki kelime öbeklerini içeren 100 sınıfta geliştirilmiştir. Öte yandan çalışma geliştirilirken LSTM, BGRU ve Dilated CNN ile karşılaştırmalar yapılmıştır. Yalnızca görsel veri kullanılarak yapılan önerilen çalışma, derin öğrenme yaklaşımıyla otomatik görsel konuşma tanıma modeli elde etmiştir. Ayrıca, bu çalışma yalnızca görsel veri kullandığından çoklu modalite çalışmalarına göre hesaplama maliyeti ve kaynak kullanımı daha azdır. Ayrıca, Birleşik İmajlar Yönetimiyle, görüntü çerçevelerini tek bir büyük çerçeveye birleştirme işlemine dayandırarak klasik kesik yöntemle karşılaştırma yaptık. Ayrıca, bu çalışma, Ural-Altay dillerine ait yeni bir veri seti kullanarak derin öğrenme algoritmasıyla dudak okuma problemine yönelik yapılan ilk bilinen çalışmadır. | |
| dc.identifier.uri | https://hdl.handle.net/11727/13837 | |
| dc.language.iso | en | |
| dc.publisher | Başkent Üniversitesi Fen Bilimleri Enstitüsü | |
| dc.subject | Lip Reading | |
| dc.subject | Deep Learning | |
| dc.subject | Image Processing | |
| dc.subject | Convolutional Neural Networks | |
| dc.subject | LSTM | |
| dc.subject | BGRU | |
| dc.subject | Dilated CNN | |
| dc.subject | Turkish | |
| dc.subject | Concatenated Frame | |
| dc.title | The Turkish lip reading using deep learning method | |
| dc.type | Doctoral Thesis |