Feature-level Fusion of Convolutional Neural Networks for Visual Object Classification

dc.contributor.authorErgun, Hilal
dc.contributor.authorSert, Mustafa
dc.contributor.orcIDhttps://orcid.org/0000-0002-7056-4245en_US
dc.contributor.researcherIDAAB-8673-2019en_US
dc.date.accessioned2023-07-19T11:55:22Z
dc.date.available2023-07-19T11:55:22Z
dc.date.issued2016
dc.description.abstractDeep learning architectures have shown great success in various computer vision applications. In this study, we investigate some of the very popular convolutional neural network (CNN) architectures, namely GoogleNet, AlexNet, VGG19 and ResNet. Furthermore, we show possible early feature fusion strategies for visual object classification tasks. Concatanation of features, average pooling and maximum pooling are among the investigated fusion strategies. We obtain state-of-the-art results on well-known image classification datasets of Caltech-101, Caltech-256 and Pascal VOC 2007.en_US
dc.identifier.endpage2176en_US
dc.identifier.isbn978-1-5090-1679-2en_US
dc.identifier.startpage2173en_US
dc.identifier.urihttp://hdl.handle.net/11727/9987
dc.identifier.wos000391250900520en_US
dc.language.isoturen_US
dc.relation.journal2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learningen_US
dc.subjectconvolutional neural networksen_US
dc.subjectvisual object classificationen_US
dc.subjectfeature fusionen_US
dc.titleFeature-level Fusion of Convolutional Neural Networks for Visual Object Classificationen_US
dc.typeconferenceObjecten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: