Approximation By An Integral Type Apostol-Genocchi Operators

dc.contributor.authorDalmanoglu, Ozge
dc.date.accessioned2025-04-28T08:30:00Z
dc.date.issued2024-08-16
dc.description.abstractThe goal of the current paper is to present an integral type FavardSzasz operators including Apostol-Genocchi poynomials. With the help of the moments, we investigate the order of convergence in terms of the first and the second order modulus of continuity and Peetres K- functional. We also examine the convergence in the weighted spaces of functions by means of weighted Korovkin type theorem.
dc.identifier.issn2217-3412
dc.identifier.scopus2-s2.0-85198130049
dc.identifier.scopus2-s2.0-85211576920
dc.identifier.urihttps://hdl.handle.net/11727/12905
dc.identifier.wos001289000200003
dc.identifier.wos001285697900008
dc.language.isoen_US
dc.publisherJOURNAL OF MATHEMATICAL ANALYSIS
dc.subjectweighted space
dc.subjectKorovkin's theorem
dc.subjectrate of convergence
dc.subjectApostol-Genocchi operators
dc.subjectGamma function
dc.titleApproximation By An Integral Type Apostol-Genocchi Operators
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Kapalı Erişim.pdf
Size:
78 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: