Approximation By An Integral Type Apostol-Genocchi Operators
| dc.contributor.author | Dalmanoglu, Ozge | |
| dc.date.accessioned | 2025-04-28T08:30:00Z | |
| dc.date.issued | 2024-08-16 | |
| dc.description.abstract | The goal of the current paper is to present an integral type FavardSzasz operators including Apostol-Genocchi poynomials. With the help of the moments, we investigate the order of convergence in terms of the first and the second order modulus of continuity and Peetres K- functional. We also examine the convergence in the weighted spaces of functions by means of weighted Korovkin type theorem. | |
| dc.identifier.issn | 2217-3412 | |
| dc.identifier.scopus | 2-s2.0-85198130049 | |
| dc.identifier.scopus | 2-s2.0-85211576920 | |
| dc.identifier.uri | https://hdl.handle.net/11727/12905 | |
| dc.identifier.wos | 001289000200003 | |
| dc.identifier.wos | 001285697900008 | |
| dc.language.iso | en_US | |
| dc.publisher | JOURNAL OF MATHEMATICAL ANALYSIS | |
| dc.subject | weighted space | |
| dc.subject | Korovkin's theorem | |
| dc.subject | rate of convergence | |
| dc.subject | Apostol-Genocchi operators | |
| dc.subject | Gamma function | |
| dc.title | Approximation By An Integral Type Apostol-Genocchi Operators | |
| dc.type | Article |