Derin öğrenme yöntemleri ile akciğer grafilerinde patoloji sınıflandırılması

dc.contributor.authorOltu, Burcu
dc.date.accessioned2025-10-21T14:04:44Z
dc.date.issued2025
dc.description.abstractAkciğerler, solunum sisteminin temel organları olup yapısal bozukluklar, enfeksiyonlar veya çevresel etkenler nedeniyle işlev kaybına uğrayabilmektedir. COVID-19, tüberküloz, pnömoni, pulmoner fibröz, atelektazi, kardiyomegali ve pnömotoraks gibi akciğer hastalıkları erken evrede teşhis edilmediğinde ölümcül sonuçlara yol açabilmektedir. Bu nedenle akciğer hastalıklarının erken ve doğru şekilde teşhis edilmesi büyük önem taşımaktadır. Akciğer grafileri, düşük maliyet ve hızlı uygulanabilirlik gibi avantajlarıyla bu amaçla yaygın olarak kullanılmaktadır. Ancak örtüşen anatomik yapılar, sınırlı uzman sayısı ve yüksek görüntü hacmi gibi etkenler, bu görüntülerin yorumlanmasını zorlaştırmakta, günlük yaklaşık %3-5 oranında hata yapılmasına yol açmaktadır. Bu doğrultuda akciğer grafilerinin yorumlanabilmesi için radyologlara yardımcı olacak otomatik ve güvenilir teşhis sistemlerine duyulan ihtiyaç gün geçtikçe artmaktadır. Bu tez çalışmasında akciğer grafilerinin yüksek performansla sınıflandırılması amacıyla uçtan uca bir derin öğrenme modeli geliştirilmiş ve bu modelin başarısını artıracak özgün kayıp fonksiyonlarını önerilmiştir. Modelin omurgası olarak önceden eğitilmiş DenseNet201 mimarisi kullanılmıştır. DenseNet201’den çıkarılan öznitelik haritalarından daha zengin uzamsal bilgiler elde etmek amacıyla evrişimsel uzun kısa süreli bellek (Convolutional Long Short-Term Memory (ConvLSTM)) katmanı, kanal bazında özniteliklerin vurgulanması için sıkma-bırakma bloğu (Squeeze and Excitation (SE)) ve uzun menzilli bağımlılıkları yakalayan görü dönüştürücüler (Vision Transformer (ViT)) modele entegre edilmiştir. Ayrıca, küresel ortalama havuzlama (Global Average Pooling (GAP)) katmanı ile sınıflandırma için önemli uzamsal bilgilerin korunması sağlanmıştır. Bu bileşenlerin kombinasyonu ile önerilen model, yüksek sınıflandırma performansı sunmuştur. Çalışmada ayrıca, sınıflandırma başarısında önemli etkisi olan kayıp fonksiyonları derinlemesine incelenmiştir. Standart fonksiyonlara ek olarak hibrit ve dinamik yapılarda fonksiyonlar tasarlanmış, sınıflandırma eğilimlerine karşı ceza terimi içeren özgün bir fonksiyon önerilmiştir. Önerilen kayıp fonksiyonlarının avantajlarını bir araya getirerek sınıflandırma performansını artıracak farklı topluluk yaklaşımları uygulanmıştır. Bu fonksiyonların performansları sistematik olarak analiz edilmiş ve farklı modellerle de test edilerek modelden bağımsız başarı sağladığı gösterilmiştir. Başkent Üniversitesi Ankara Hastanesi Radyoloji Bölümü'nden elde edilen klinik veriler ile açık erişimli veri kümeleri birleştirilerek 7, 8, 9, 10, 12, 14 ve 15 sınıflı alt veri kümeleri oluşturulmuş ve her bir alt kümede önerilen model ve kayıp fonksiyonları detaylı şekilde test edilmiştir. Böylece hem veri kümesinden hem de sınıf sayısından bağımsız olarak modelin ve kayıp fonksiyonunun başarısı ortaya konmuştur. Elde edilen deneysel sonuçlar, önerilen yöntemin literatürdeki yaklaşımların çoğunu geride bıraktığını ve doğruluk, F1-skoru, AUC gibi performans metriklerinde yüksek başarı sergilediğini ortaya koymaktadır. Ayrıca modelin farklı senaryolarda tutarlı ve yüksek performans sergilemesi, güçlü bir genelleme yeteneğine sahip olduğunu kanıtlamaktadır. Sonuç olarak, bu tez kapsamında, akciğer grafilerinin otomatik olarak sınıflandırılmasını sağlayan yüksek performanslı ve tekrarlanabilir sonuçlar üreten yenilikçi bir model ve özgün kayıp fonksiyonları geliştirilmiştir. The lungs are the primary organs of the respiratory system and can lose functionality due to structural disorders, infections, or environmental factors. Lung diseases such as COVID-19, tuberculosis, pneumonia, pulmonary fibrosis, atelectasis, cardiomegaly, and pneumothorax may lead to fatal outcomes if not diagnosed at an early stage. Therefore, early and accurate diagnosis of lung diseases is crucial. Chest radiographs (CXRs) are widely used for this purpose due to their advantages, such as low cost, quick applicability, and low radiation dose. However, factors like overlapping anatomical structures, limited specialists, and high image volume make interpreting CXRs challenging, resulting in a daily error rate of 3–5%. Thus, the demand for automated and reliable diagnostic systems to assist radiologists in interpreting CXRs is increasing. In this thesis, an end-to-end deep learning model was developed for high-performance classification of CXRs, and novel loss functions were proposed to enhance the model’s performance. The pre-trained DenseNet201 architecture was used as the backbone. A Convolutional Long Short-Term Memory (ConvLSTM) layer to obtain richer spatial and temporal information from the feature maps obtained from DenseNet201, a Squeeze and Excitation (SE) block to emphasize channel-wise features, and Vision Transformers (ViT) to capture long-range dependencies were integrated into the model. In addition, a Global Average Pooling (GAP) layer was used to preserve important spatial information for classification. The combination of these components enabled high classification performance. The study also examined the often-overlooked role of loss functions in classification performance. Beyond standard functions, hybrid and dynamic structures were designed. A custom function with a penalty term was proposed to improve sensitivity to misclassification. Ensemble approaches combining the strengths of proposed loss functions were implemented. These loss functions were systematically analyzed and tested with various models, demonstrating architecture-independent success. To evaluate the performance and generalization ability of the proposed model and loss functions, a comprehensive dataset was created by combining clinical images from Başkent University Ankara Hospital with open-access datasets. This dataset was divided into subsets containing 7, 8, 9, 10, 12, 14, and 15 classes, and extensive testing was conducted on each subset. Results showed that the proposed method outperforms many existing approaches in the literature, achieving superior accuracy, F1-score, and AUC. The model’s consistent performance in various scenarios demonstrated strong generalization. In conclusion, this thesis presents a novel deep learning model and original loss functions that produce high-performance and reproducible results for the automatic classification of CXRs
dc.identifier.urihttps://hdl.handle.net/11727/13836
dc.language.isotr
dc.publisherBaşkent Üniversitesi Fen Bilimleri Enstitüsü
dc.subjectAkciğer Grafileri
dc.subjectDerin Öğrenme
dc.subjectEvrişimsel Sinir Ağı
dc.subjectDikkat Mekanizması
dc.subjectKayıp Fonksiyonları
dc.titleDerin öğrenme yöntemleri ile akciğer grafilerinde patoloji sınıflandırılması
dc.typeDoctoral Thesis

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10596767.pdf
Size:
5.89 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: