Sketch recognition using transfer learning

dc.contributor.authorSert, Mustafa
dc.contributor.authorBoyaci, Emel
dc.contributor.orcID0000-0002-7056-4245en_US
dc.contributor.researcherIDAAB-8673-2019en_US
dc.date.accessioned2020-12-26T11:29:22Z
dc.date.available2020-12-26T11:29:22Z
dc.date.issued2019
dc.description.abstractHumans have an excellent ability to recognize freehand sketch drawings despite their abstract and sparse structures. Understanding freehand sketches with automated methods is a challenging task due to the diversity and abstract structures of these sketches. In this paper, we propose an efficient freehand sketch recognition scheme, which is based on the feature-level fusion of Convolutional Neural Networks (CNNs) in the transfer learning context. Specifically, we analyse different layer performances of distinct ImageNet pretrained CNNs and combine best performing layer features within the CNN-SVM pipeline for recognition. We also employ Principal Component Analysis (PCA) to reduce the fused deep feature dimensions to ensure the efficiency of the recognition application on the limited-capacity devices. We perform evaluations on two real sketch benchmark datasets, namely the Sketchy and the TU-Berlin to show the effectiveness of the proposed scheme. Our experimental results show that, the feature-level fusion scheme with the PCA achieves a recognition accuracy of 97.91% and 72.5% on the Sketchy and TU-Berlin datasets, respectively. This result is promising when compared with the human recognition accuracy of 73.1% on the TU-Berlin dataset. We also develop a sketch recognition application for smart devices to demonstrate the proposed scheme.en_US
dc.identifier.endpage17112en_US
dc.identifier.issn1380-7501en_US
dc.identifier.issue12en_US
dc.identifier.scopus2-s2.0-85059663853en_US
dc.identifier.startpage17095en_US
dc.identifier.urihttp://hdl.handle.net/11727/5218
dc.identifier.volume78en_US
dc.identifier.wos000472094500061en_US
dc.language.isoengen_US
dc.relation.isversionof10.1007/s11042-018-7067-1en_US
dc.relation.journalMULTIMEDIA TOOLS AND APPLICATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSketch recognitionen_US
dc.subjectTransfer learningen_US
dc.subjectConvolutional neural networks (CNNs)en_US
dc.subjectFeature fusionen_US
dc.titleSketch recognition using transfer learningen_US
dc.typeArticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: