Classification of Different Objects with Artificial Neural Networks Using Electronic Nose

dc.contributor.authorOzsandikcioglu, Umit
dc.contributor.authorAtasoy, Ayten
dc.contributor.authorGuney, Selda
dc.contributor.orcID0000-0002-5397-6301en_US
dc.contributor.orcID0000-0003-1188-2902en_US
dc.contributor.orcID0000-0002-0573-1326en_US
dc.contributor.researcherIDAAR-4368-2020en_US
dc.contributor.researcherIDHJH-3630-2023en_US
dc.contributor.researcherIDAAC-7404-2020en_US
dc.date.accessioned2023-11-09T13:05:49Z
dc.date.available2023-11-09T13:05:49Z
dc.date.issued2015
dc.description.abstractIn this paper; an e-nose with low cost which consisting of 8 different gas sensors was used and with this e-nose 9 different odors ((mint, lemon, egg, rotten egg, angelica root, nail polish, naphthalene, rose water, and acetone) was classified. This 9 different odor are classified with Artificial Neural Networks and by using different activation functions, and then the successes of the classification were compared with each other. The maximum success of the testing data is obtained with 100% accuracy rate by using logsig activation function in hidden layer and tansig activation function in output layer. In conclusion; using the chemical database containing the odor of the different objects, distinct odors were shown to be classified correctly.en_US
dc.identifier.endpage818en_US
dc.identifier.isbn978-1-4673-7386-9en_US
dc.identifier.issn2165-0608en_US
dc.identifier.scopus2-s2.0-84939131643en_US
dc.identifier.startpage815en_US
dc.identifier.urihttp://hdl.handle.net/11727/10814
dc.identifier.wos000380500900184en_US
dc.language.isoturen_US
dc.relation.isversionof10.1109/SIU.2015.7129953en_US
dc.relation.journal23nd Signal Processing and Communications Applications Conference (SIU)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectElectronic noseen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectClassificationen_US
dc.titleClassification of Different Objects with Artificial Neural Networks Using Electronic Noseen_US
dc.typeconferenceObjecten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: