Classification of Different Objects with Artificial Neural Networks Using Electronic Nose
dc.contributor.author | Ozsandikcioglu, Umit | |
dc.contributor.author | Atasoy, Ayten | |
dc.contributor.author | Guney, Selda | |
dc.contributor.orcID | 0000-0002-5397-6301 | en_US |
dc.contributor.orcID | 0000-0003-1188-2902 | en_US |
dc.contributor.orcID | 0000-0002-0573-1326 | en_US |
dc.contributor.researcherID | AAR-4368-2020 | en_US |
dc.contributor.researcherID | HJH-3630-2023 | en_US |
dc.contributor.researcherID | AAC-7404-2020 | en_US |
dc.date.accessioned | 2023-11-09T13:05:49Z | |
dc.date.available | 2023-11-09T13:05:49Z | |
dc.date.issued | 2015 | |
dc.description.abstract | In this paper; an e-nose with low cost which consisting of 8 different gas sensors was used and with this e-nose 9 different odors ((mint, lemon, egg, rotten egg, angelica root, nail polish, naphthalene, rose water, and acetone) was classified. This 9 different odor are classified with Artificial Neural Networks and by using different activation functions, and then the successes of the classification were compared with each other. The maximum success of the testing data is obtained with 100% accuracy rate by using logsig activation function in hidden layer and tansig activation function in output layer. In conclusion; using the chemical database containing the odor of the different objects, distinct odors were shown to be classified correctly. | en_US |
dc.identifier.endpage | 818 | en_US |
dc.identifier.isbn | 978-1-4673-7386-9 | en_US |
dc.identifier.issn | 2165-0608 | en_US |
dc.identifier.scopus | 2-s2.0-84939131643 | en_US |
dc.identifier.startpage | 815 | en_US |
dc.identifier.uri | http://hdl.handle.net/11727/10814 | |
dc.identifier.wos | 000380500900184 | en_US |
dc.language.iso | tur | en_US |
dc.relation.isversionof | 10.1109/SIU.2015.7129953 | en_US |
dc.relation.journal | 23nd Signal Processing and Communications Applications Conference (SIU) | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Electronic nose | en_US |
dc.subject | Artificial Neural Networks | en_US |
dc.subject | Classification | en_US |
dc.title | Classification of Different Objects with Artificial Neural Networks Using Electronic Nose | en_US |
dc.type | conferenceObject | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: