Ka Band Far Field Radio Link System Based on OAM Multiplexed Vortex Beams Collimated by a Paraboloidal Reflector
No Thumbnail Available
Date
2021
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Electromagnetic vortex-waves (VW) have linear azimuthal-phase, orthogonality in azimuth and orbital-angular-momentum (OAM). The VW-pattern has a null along the vorticity-axis and the cone-half-angle (CHA) and the beam-width (BW) expands with the OAM mode number p. Here, we collimated all p-VW-beams into a radiation cone (Rcon) with a small CHA and BW using a paraboloidal reflector (PaR) fed by a VW uniform-circular-array (UCA). We multiplexed all the transmitted (TX) +/- p-modes, each modulated by a 16QAM symbol-vector. We receive (RX) the TX-signal by p(max) number of nonvortex PaR antennas placed on a small arc of the Rcon. The RX-signal is cast into the standard discrete-Fourier-transform (DFT) format, using the beam-collimation, the azimuthal-orthogonality and zero-padding. The demultiplexing is performed by IDFT. The UCA is designed at Ka-band using circular microstrip-patch-antennas (msPA). The +/- p-modes are TX'ed by orthogonally-polarized separate msPA's. The effects of coupling of +/- p-modes, the calibration inaccuracies and signal-to-noise-ratio (SNR) are simulated by the Monte-Carlo method. It was found that the SNR is very high and the far-field radio-link is feasible. The bit rate of the present OAM-16QAM radio-link is increased by a factor of 2 p(max).
Description
Keywords
antennas, vortex array, radio-link