mirLSTM: A Deep Sequential Approach to MicroRNA Target Binding Site Prediction

dc.contributor.authorPaker, Ahmet
dc.contributor.authorOgul, Hasan
dc.contributor.researcherIDHJH-2307-2023en_US
dc.date.accessioned2023-09-07T07:30:54Z
dc.date.available2023-09-07T07:30:54Z
dc.date.issued2019
dc.description.abstractMicroRNAs (miRNAs) are small and non-coding RNAs of similar to 21-23 base length, which play critical role in gene expression. They bind the target mRNAs in the post-transcriptional level and cause translational inhibition or mRNA cleavage. Quick and effective detection of the binding sites of miRNAs is a major problem in bioinformatics. In this study, a deep learning approach based on Long Short Term Memory (LSTM) is developed with the help of an existing duplex sequence model. Compared with four conventional machine learning methods, the proposed LSTM model performs better in terms of the accuracy (ACC), sensitivity, specificity, AUC (Area under the curve) and F1 score. A web-tool is also developed to identify and display the microRNA target sites effectively and quickly.en_US
dc.identifier.endpage44en_US
dc.identifier.isbn978-3-030-27684-3en_US
dc.identifier.scopus2-s2.0-85071891935en_US
dc.identifier.startpage38en_US
dc.identifier.urihttp://hdl.handle.net/11727/10511
dc.identifier.volume1062en_US
dc.identifier.wos000711190500006en_US
dc.language.isoengen_US
dc.relation.isversionof10.1007/978-3-030-27684-3_6en_US
dc.relation.journalDATABASE AND EXPERT SYSTEMS APPLICATIONSen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learningen_US
dc.subjectRNNen_US
dc.subjectLSTMen_US
dc.subjectBioinformaticsen_US
dc.subjectSequence Alignmenten_US
dc.subjectmiRNAen_US
dc.subjectTarget predictionen_US
dc.subjectmiRNA target siteen_US
dc.titlemirLSTM: A Deep Sequential Approach to MicroRNA Target Binding Site Predictionen_US
dc.typeConference Objecten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: