Hand structure detection and suitable nail type recommendation system
No Thumbnail Available
Files
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Başkent Üniversitesi Fen Bilimleri Enstitüsü
Abstract
Hands play a crucial role in human interaction and functionality, essential in activities ranging from basic tasks to complex operations. They are essential to fields like biometrics, ergonomics, healthcare, robotics, and the cosmetics industry, particularly in nail care and aesthetics. Understanding hand types can significantly enhance product development and personalization. This article proposes a novel approach for classifying hands based on their dimensions using deep learning methods to recommend nail types. Traditional methods rely on manual measurements or complex feature engineering, which are labor-intensive and prone to errors. In this study, deep learning techniques have been leveraged to automatically classify hands into distinct categories based on palm length, palm width, and middle finger length, and suggest nail types for each hand shape accordingly. A dataset of 2050 images was collected and annotated for classification. Various Convolutional Neural Network (CNN) architectures, including VGG16, LeNet-5, AlexNet, GoogLeNet, Residual Network (ResNet), Dense Convolutional Network (DenseNet), and MobileNet, were tested and compared for accuracy. VGG16 emerged as the most successful model, achieving high accuracy in classifying hands into predefined categories. Based on these classifications, the suggested model recommends two nail types for each hand type, from a total of seven different nail types. The outcome of the applied model was assessed using standard metrics, advancing hand classification techniques to offer a robust, automated solution for personalized nail recommendations. Eller, insan etkileşimi ve işlevselliğinde kritik bir rol oynar; temel görevlerden karmaşık operasyonlara kadar geniş bir yelpazede kullanılır. Biyometrik, ergonomi, sağlık, robotik ve kozmetik endüstrisi gibi alanlarda önemlidir, özellikle tırnak bakımı ve estetiği alanında. El tiplerinin anlaşılması ürün geliştirme ve kişiselleştirme açısından önemlidir. Bu makale, el boyutlarına dayalı olarak ellerin sınıflandırılmasını ve her el şekli için tırnak tipleri önerilmesini sağlayan derin öğrenme yöntemlerini önermektedir. Geleneksel yöntemler manuel ölçümlere veya karmaşık özellik mühendisliğine dayanır, bu da işgücü yoğunluğuna ve hata riskine neden olabilir. Bu çalışmada, avuç içi uzunluğu, avuç içi genişliği ve orta parmak uzunluğuna dayalı olarak ellerin otomatik olarak farklı kategorilere sınıflandırılması ve her el şekli için tırnak tipleri önerilmesi için derin öğrenme teknikleri kullanılmıştır. Sınıflandırma için 2050 görüntüden oluşan bir veri seti toplanmış ve etiketlenmiştir. VGG16, LeNet-5, AlexNet, GoogLeNet, Residual Network (ResNet), Dense Convolutional Network (DenseNet) ve MobileNet gibi çeşitli Evrişimli Sinir Ağı (CNN) mimarileri doğruluk açısından test edilmiş ve karşılaştırılmıştır. VGG16, önceden tanımlanmış kategorilere eli başarıyla sınıflandırma konusunda yüksek doğruluk elde ederek en başarılı model olarak ortaya çıkmıştır. Bu sınıflandırmalar temelinde önerilen model, her el tipi için yedi farklı tırnak tipinden ikisini önermektedir. Uygulanan modelin sonucu standart metrikler kullanılarak değerlendirilmiş ve kişiselleştirilmiş tırnak önerileri için sağlam, otomatik bir çözüm sunulmuştur.
Description
Keywords
Hand Type Classification, Deep Learning, Convolutional Neural Networks, Nail Type Recommendation, Hand Dimensions, Nail Shape, Transfer Learning