Simultaneous Reconstruction of the Source Term and The Surface Heat Transfer Coefficient

dc.contributor.authorKaya, Mujdat
dc.contributor.authorErdem, Arzu
dc.contributor.orcID0000-0003-4284-356Xen_US
dc.contributor.researcherIDAAD-3916-2020en_US
dc.date.accessioned2024-03-05T12:00:34Z
dc.date.available2024-03-05T12:00:34Z
dc.date.issued2015
dc.description.abstractWe study the problem of identifying unknown source terms in an inverse parabolic problem, when the overspecified (measured) data are given in form of Dirichlet boundary condition u(0,t)=h(t) and u(x,t)=q(x,t),(x,t, is an element of Omega(t1)degrees, where Omega(t1)degrees is an arbitrarily prescribed subregion. The main goal here is to show that the gradient of cost functional can be expressed via the solutions of the direct and corresponding adjoint problems. We prove Holder continuity of the cost functional and derive the Lipschitz constant in the explicit form via the given data. On the basis of the obtained results, we propose a monotone iteration process. Copyright (c) 2014 John Wiley & Sons, Ltd.en_US
dc.identifier.eissn1099-1476en_US
dc.identifier.endpage526en_US
dc.identifier.issn0170-4214en_US
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84921433510en_US
dc.identifier.startpage517en_US
dc.identifier.urihttp://hdl.handle.net/11727/11708
dc.identifier.volume38en_US
dc.identifier.wos000348524600009en_US
dc.language.isoengen_US
dc.relation.isversionof10.1002/mma.3084en_US
dc.relation.journalMATHEMATICAL METHODS IN THE APPLIED SCIENCESen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectinverse parabolic problemen_US
dc.subjectunknown source termsen_US
dc.subjectadjoint problemen_US
dc.subjectHolder continuityen_US
dc.titleSimultaneous Reconstruction of the Source Term and The Surface Heat Transfer Coefficienten_US
dc.typearticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: