Neurodegenerative disease detection and severity prediction using deep learning approaches

dc.contributor.authorErdas, Cagatay Berke
dc.contributor.authorSumer, Emre
dc.contributor.authorKibaroglu, Seda
dc.contributor.orcID0000-0002-3964-268Xen_US
dc.contributor.researcherIDAAJ-2956-2021en_US
dc.contributor.researcherIDAGA-5711-2022en_US
dc.date.accessioned2022-08-11T11:54:37Z
dc.date.available2022-08-11T11:54:37Z
dc.date.issued2021
dc.description.abstractNeurodegenerative diseases (NDDs) such as amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD) can manifest themselves anatomically by degeneration in the brain as well as motor symptoms. The motor symptoms can affect walking dynamics in a disease-specific fashion; characteristically they disrupt gait. As the severity of the disease increases, walking ability deteriorates. We examined the effect of NDDs such as ALS, HD, and PD on gait and developed a convolutional long short-term memory (ConvLSTM) and threedimensional convolutional learning network (3D CNN)-based approach to detecting neurodegenerative conditions and predicting disease severity.en_US
dc.identifier.issn1746-8094en_US
dc.identifier.scopus2-s2.0-85112816613en_US
dc.identifier.urihttp://hdl.handle.net/11727/7321
dc.identifier.volume70en_US
dc.identifier.wos000697773000003en_US
dc.language.isoengen_US
dc.relation.isversionof10.1016/j.bspc.2021.103069en_US
dc.relation.journalBIOMEDICAL SIGNAL PROCESSING AND CONTROLen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergien_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNeurodegenerative diseaseen_US
dc.subjectClassification of NDDen_US
dc.subjectPrediction of NDDen_US
dc.subjectConvLSTMen_US
dc.subject3D CNNen_US
dc.titleNeurodegenerative disease detection and severity prediction using deep learning approachesen_US
dc.typearticleen_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: