Continuous Valence Prediction Using Recurrent Neural Networks with Facial Expressions and EEG Signals

dc.contributor.authorSen, Dogancan
dc.contributor.authorSert, Mustafa
dc.date.accessioned2023-08-15T06:33:45Z
dc.date.available2023-08-15T06:33:45Z
dc.date.issued2018
dc.description.abstractAutomatic analysis of human emotions by computer systems is an important task for human-machine interaction. Recent studies show that, the temporal characteristics of emotions play an important role in the success of automatic recognition. Also, the use of different signals (facial expressions, bio-signals, etc.) is important for the understanding of emotions. In this study, we propose a multi-modal method based on feature-level fusion of human facial expressions and electroencephalograms (EEG) data to predict human emotions in continuous valence dimension. For this purpose, a recursive neural network (LSTM-RNN) with long short-term memory units is designed. The proposed method is evaluated on the MAHNOB-HCI performance data set.en_US
dc.identifier.endpage4en_US
dc.identifier.isbn978-1-5386-1501-0en_US
dc.identifier.issn2165-0608en_US
dc.identifier.scopus2-s2.0-85050816683en_US
dc.identifier.startpage1en_US
dc.identifier.urihttp://hdl.handle.net/11727/10274
dc.identifier.wos000511448500382en_US
dc.language.isoturen_US
dc.relation.isversionof10.1109/SIU.2018.8404529en_US
dc.relation.journal26th IEEE Signal Processing and Communications Applications Conference (SIU)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfacial expressionen_US
dc.subjectlstmen_US
dc.subjectcontinuous valence predictionen_US
dc.subjectemotion recognitionen_US
dc.titleContinuous Valence Prediction Using Recurrent Neural Networks with Facial Expressions and EEG Signalsen_US
dc.typeConference Objecten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: