Data Integration for Gene Expression Prediction

dc.contributor.authorBayrak, Tuncay
dc.contributor.authorOgul, Hasan
dc.contributor.orcID0000-0001-6826-4350en_US
dc.contributor.researcherIDU-4603-2019en_US
dc.date.accessioned2023-04-18T11:31:18Z
dc.date.available2023-04-18T11:31:18Z
dc.date.issued2018
dc.description.abstractIn computational system biology, one challenging topic is predicting the exact value of gene expression for further meta-analysis. For this, a data integration approach and regression based task are proposed. To improve prediction performance, gene expression data consisted of continuous value is integrated with binary data from miRNA-mRNA regulation pairs by a simple approach. For regression task, a recently introduced method, Relevance Vector Machine (RVM) and linear regression are used. For evaluation, Spearman and Pearson Correlation Coefficients, and Root Mean Squared Error are used. The results we obtain show that the proposed approach can significantly improve the prediction performance. Data integration approach and RVM are promising in many machine learning problems.en_US
dc.identifier.scopus2-s2.0-85062487785en_US
dc.identifier.urihttp://hdl.handle.net/11727/8826
dc.identifier.wos000458717400192en_US
dc.language.isoengen_US
dc.relation.journal2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP)en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRegressionen_US
dc.subjectgene expression predictionen_US
dc.subjectmicro-RNAen_US
dc.subjectregulatoryen_US
dc.subjectmicroarrayen_US
dc.subjectdata integrationen_US
dc.titleData Integration for Gene Expression Predictionen_US
dc.typeconferenceObjecten_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: