Meslek Yüksek Okulları / Vocational Schools
Permanent URI for this communityhttps://hdl.handle.net/11727/1410
Browse
74 results
Search Results
Item Optimization of Waiting and Journey Time in Group Elevator System Using Genetic Algorithm(2014) Tartan, Emre Oner; Erdem, Hamit; Berkol, AliEfficient elevator group control is an important issue for vertical transportation in high-rise buildings. From the engineering design perspective, regulation of average waiting time and journey time while considering energy consumption is an optimization problem. Alternatively to the conventional algorithms for scheduling and dispatching cars to hall calls, intelligent systems based methods have drawn much attention in the last years. This study aims to improve the elevator group control system's performance by applying genetic algorithm based optimization algorithms considering two systems. Firstly, average passenger waiting time is optimized in the conventional elevator systems in which a hall call is submitted by indicating the travel direction. Secondly, a recent development in elevator industry is considered and it is assumed that instead of direction indicators there are destination button panels at floors that allow passengers to specify their destinations. In this case optimization of average waiting time, journey time and car trip time is investigated. Two proposed algorithms have been applied considering preload conditions in a building with 20 floors and 4 cars. The simulation results have been compared with a previous study and conventional duplex algorithm.Item Brain Tumor Prediction with Deep Learning and Tumor Volume Calculation(2021) Karayegen, Gokay; Aksahin, Mehmet FeyziItem Deep Learning Based Multi Modal Approach for Pathological Sounds Classification(2020) Ankishan, Haydar; Kocoglu, ArifAutomatic detection of voice disorders is very important because it makes the diagnosis process simpler, cheaper and less time consuming. In the literature, there are many studies available on the analysis of voice disorders based on the characteristics of the voice and subdividing the result of this analysis. In general, these studies have been carried out in order to subdivide the sound into pathological - normally sub - groups by means of certain classifiers as a result of subtraction of the features on frequency, time or hybrid axis. In contrast to existing approaches, in this study, a multiple- deep learning model using feature level fusion is proposed to distinguish pathological-normal sounds from each other. First, a feature vector (HOV) on the hybrid axis was obtained from the raw sound data. Then two CNN models were used. The first model has used raw audio data and the second model has used HOV as an input. Feature data in both model SoftMax layers were obtained as a matrix, and canonical correlation analysis (Canonical Correlation Analysis (CCA) was applied at feature level fusion. The new obtained feature vector was used as an input for multiple support vector machines (M-SVMs), Decision Tree (DTC) and naive bayes (NBC) classifiers. When the experimental results are examined, it is seen that the new multi-model based deep learning architecture provides superior success in classifying pathological sound data. With the results of the study, it will be possible to automatically detect and classify the pathology of these patients according to the proposed system.Item An Approach to the Classification of Environmental Sounds by LSTM Based Transfer Learning Method(2020) Ankishan, HaydarThis electronic Effective frequency extraction from acoustic environmental sounds in frequency and time axis increases the importance of voice recognition, sound detection, environmental classification in recently. For this purpose, there are many studies in the literature on the discrimination of acoustic environmental sounds. These studies generally perform these operations with the help of machine learning and deep learning algorithms. In this study, a new artificial intelligence architecture using two long short term memory networks (LSTM) is designed. The structure, which uses both raw data and the proposed feature vector at its inputs, is reinforced by the transfer learning approach. The obtained classification results were fused at the decision level. As a result of experimental studies, five different environmental acoustic sounds were subdivided into 97.15% test accuracy. In environmental studies conducted in pairs, it is seen that the environmental sounds have reached 100% accuracy. Experimental results have shown that the proposed artificial intelligence architecture with fusion support at decision level is capable of discriminating acoustic environmental sounds.Item Measurement and Analysis of Electromagnetic Fields of Mobile Communication Antennas in Turkish Republic of Northern Cyprus(2019) Bulut, Ayse; Firlarer, ArzuItem A New Approach for Discriminating the Acoustic Signals: Largest Area Parameter (LAP)(2018) Ankishan, Haydar; Inam, S. CagdasFeature extraction of sound signals is essential for the performance of applications such as pattern and voice recognition etc. In this study, a method based on a novel feature is proposed to separate pathological human voice signals from healthy ones as well as to separate subgroups of pathological voices from each other. The voices are examined in time-frequency domain. Their differences obtained from the results of the proposed method are investigated and the mechanism of the method is demonstrated using experimental cases. It is concluded that the method succeeds to discriminate the voices marked "healthy" and "pathological".Item A New Portable Device for the Snore/Non-Snore Classification(2017) Ankishan, Haydar; Tuncer, A. Turgut; 0000-0002-6240-2545; AAH-4421-2019Snoring is widely known as a disease. The aim of this paper is to introduce and validate our newly developed snoring detection device to identify automatically snore and non-snore sounds using a nonlinear analysis technique. The developed device can analyze chaotic features of a snore related sounds such as entropy, Largest Lyapunov Exponents (LLEs) and also has the data classification ability depending on the feature values. We report that the developed snoring detection device with proposed automatic classification method could achieve an accuracy of 94.38% for experiment I and 82.02 for experiment II when analyzing snore and non-snore sounds from 22 subjects. This study revealed the efficacy of our newly developed snoring detection device and indicated that it may be used at home an alternative to diagnose snore related sounds. It is anticipated that our findings will contribute to the development of an automated snore analysis system to be used in sleep studies.Item A New Approach for the Acoustic Analysis of the Speech Pathology(2017) Ankishan, Haydar; 0000-0002-6240-2545; AAH-4421-2019Voice disorders are a common physical problem that can be encountered today and can cause serious problems in the long term. It is necessary to analyze the voice and extract its characteristics correctly so that it can be treated. In some cases, due to their sound characteristics, they do not differ from each other characteristics exactly, and today's systems do not yet have the ability to make correct decisions. This study has taken into account those evident which from voice disturbances and tries to the analysis of these disorders by means of previously unused attributes with the help of classifier (SVMs). In this study, after the sounds are modeled with LPC and MFCC, disorder analysis is performed on the obtained signals. In the results obtained from experimental studies, it has been determined that 100% of the patients with four different diseases can be decomposed together with the used nonlinear features.Item A Simple Population Based Hybrid Harmonic Estimation Algorithm(2016) Tartan, Emre Oner; Erdem, HamitThis paper presents a new hybrid algorithm for harmonic estimation. The algorithm combines a simple fast population based search algorithm with Least Squares Method. It is based on the structural property of the harmonic estimation problem which implies that the signal model is linear in amplitude and nonlinear in phase. The hybrid algorithm uses the search algorithm for phase estimation and LS for amplitude estimation, iteratively. Exploiting the objective function defined according to the error of single harmonic's phase estimation, the proposed search algorithm distributes the population through equal intervals and simply narrows the search space sequentially in every generation. Unlike the other heuristic optimization algorithms that uses random distribution in initialization stage, the proposed method provides more robust convergence in the limits determined by the generation number. Simulation results show that the proposed hybrid algorithm not only gives accurate results but also significantly improves the computation time when compared with other heuristic optimization algorithms. Moreover this approach can be used to reduce the search duration when involved in other evolutionary optimization algorithms in a hybrid way and then can deal with frequency deviation and subharmonic estimation which are pitfalls for DFT based algorithms.Item Dedifferentiated Epithelial-Myoepithelial Carcinoma of the Parapharyngeal Area: Case Report(2016) Akcay, F. Yilmaz; Canpolat, T.; Erkan, A. N.; Borcek, P.; Gunhan, O.; 0000-0001-7138-1400; AAK-8107-2021; H-1063-2019