Meslek Yüksek Okulları / Vocational Schools

Permanent URI for this communityhttps://hdl.handle.net/11727/1410

Browse

Search Results

Now showing 1 - 4 of 4
  • Item
    Deep Learning Based Multi Modal Approach for Pathological Sounds Classification
    (2020) Ankishan, Haydar; Kocoglu, Arif
    Automatic detection of voice disorders is very important because it makes the diagnosis process simpler, cheaper and less time consuming. In the literature, there are many studies available on the analysis of voice disorders based on the characteristics of the voice and subdividing the result of this analysis. In general, these studies have been carried out in order to subdivide the sound into pathological - normally sub - groups by means of certain classifiers as a result of subtraction of the features on frequency, time or hybrid axis. In contrast to existing approaches, in this study, a multiple- deep learning model using feature level fusion is proposed to distinguish pathological-normal sounds from each other. First, a feature vector (HOV) on the hybrid axis was obtained from the raw sound data. Then two CNN models were used. The first model has used raw audio data and the second model has used HOV as an input. Feature data in both model SoftMax layers were obtained as a matrix, and canonical correlation analysis (Canonical Correlation Analysis (CCA) was applied at feature level fusion. The new obtained feature vector was used as an input for multiple support vector machines (M-SVMs), Decision Tree (DTC) and naive bayes (NBC) classifiers. When the experimental results are examined, it is seen that the new multi-model based deep learning architecture provides superior success in classifying pathological sound data. With the results of the study, it will be possible to automatically detect and classify the pathology of these patients according to the proposed system.
  • Item
    An Approach to the Classification of Environmental Sounds by LSTM Based Transfer Learning Method
    (2020) Ankishan, Haydar
    This electronic Effective frequency extraction from acoustic environmental sounds in frequency and time axis increases the importance of voice recognition, sound detection, environmental classification in recently. For this purpose, there are many studies in the literature on the discrimination of acoustic environmental sounds. These studies generally perform these operations with the help of machine learning and deep learning algorithms. In this study, a new artificial intelligence architecture using two long short term memory networks (LSTM) is designed. The structure, which uses both raw data and the proposed feature vector at its inputs, is reinforced by the transfer learning approach. The obtained classification results were fused at the decision level. As a result of experimental studies, five different environmental acoustic sounds were subdivided into 97.15% test accuracy. In environmental studies conducted in pairs, it is seen that the environmental sounds have reached 100% accuracy. Experimental results have shown that the proposed artificial intelligence architecture with fusion support at decision level is capable of discriminating acoustic environmental sounds.
  • Item
    Detecting COVID-19 from Respiratory Sound Recordings with Transformers
    (2022) Aytekin, Idil; Dalmaz, Onat; Ankishan, Haydar; Saritas, Emine U.; Bagci, Ulas; Cukur, Tolga; Celik, Haydar; Drukker, K; Iftekharuddin, KM
    Auscultation is an established technique in clinical assessment of symptoms for respiratory disorders. Auscultation is safe and inexpensive, but requires expertise to diagnose a disease using a stethoscope during hospital or office visits. However, some clinical scenarios require continuous monitoring and automated analysis of respiratory sounds to pre-screen and monitor diseases, such as the rapidly spreading COVID-19. Recent studies suggest that audio recordings of bodily sounds captured by mobile devices might carry features helpful to distinguish patients with COVID-19 from healthy controls. Here, we propose a novel deep learning technique to automatically detect COVID-19 patients based on brief audio recordings of their cough and breathing sounds. The proposed technique first extracts spectrogram features of respiratory recordings, and then classifies disease state via a hierarchical vision transformer architecture. Demonstrations are provided on a crowdsourced database of respiratory sounds from COVID-19 patients and healthy controls. The proposed transformer model is compared against alternative methods based on state-of-the-art convolutional and transformer architectures, as well as traditional machine-learning classifiers. Our results indicate that the proposed model achieves on par or superior performance to competing methods. In particular, the proposed technique can distinguish COVID-19 patients from healthy subjects with over 94% AUC.
  • Item
    Blood pressure prediction from speech recordings
    (2020) Ankishan, Haydar
    The aim of this study is to extract new features to show the relationship between speech recordings and blood pressure (BP). For this purpose, a database consisting of / a / vowels with different BP values under the same room and environment conditions is presented to the literature. Convolutional Neural Networks- Regression (CNN-R), Support Vector Machines- Regression (SVMs-R) and Multi Linear Regression (MLR) are used in this study to predict BP with extracted features. From the experiments, the highest accuracy rates of BP prediction from / a / vowel have been obtained based on Systolic BP values with CNNR. In the study, 89.43 % for MLR, 92.15 % for SVM-R and 93.65 % for CNN-R are obtained when ReliefF has been used. When the root mean square errors (RMSE) are considered, the lowest error value is obtained with CNN-R as RMSE = 0.2355. In conclusion, it can be observed that the proposed feature vector (FVx) shows a relationship between BP and the human voices, and in this direction, it can be used as an FVx in a system that will be developed in order to follow the tension of individuals. (C) 2020 Elsevier Ltd. All rights reserved.