Fakülteler / Faculties

Permanent URI for this communityhttps://hdl.handle.net/11727/1395

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Feature-level Fusion of Convolutional Neural Networks for Visual Object Classification
    (2016) Ergun, Hilal; Sert, Mustafa; https://orcid.org/0000-0002-7056-4245; AAB-8673-2019
    Deep learning architectures have shown great success in various computer vision applications. In this study, we investigate some of the very popular convolutional neural network (CNN) architectures, namely GoogleNet, AlexNet, VGG19 and ResNet. Furthermore, we show possible early feature fusion strategies for visual object classification tasks. Concatanation of features, average pooling and maximum pooling are among the investigated fusion strategies. We obtain state-of-the-art results on well-known image classification datasets of Caltech-101, Caltech-256 and Pascal VOC 2007.