Fakülteler / Faculties
Permanent URI for this communityhttps://hdl.handle.net/11727/1395
Browse
2 results
Search Results
Item Categorization Of Alzheimer's Disease Stages Using Deep Learning Approaches With Mcnemar's Test(Başkent Üniversitesi Mühendislik Fakültesi, 2024-03-13) Sener, Begum; Acici, Koray; Sumer, EmreEarly diagnosis is crucial in Alzheimer's disease both clinically and for preventing the rapid progression of the disease. Early diagnosis with awareness studies of the disease is of great importance in terms of controlling the disease at an early stage. Additionally, early detection can reduce treatment costs associated with the disease. A study has been carried out on this subject to have the great importance of detecting Alzheimer's disease at a mild stage and being able to grade the disease correctly. This study's dataset consisting of MRI images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) was split into training and testing sets, and deep learning -based approaches were used to obtain results. The dataset consists of three classes: Alzheimer's disease (AD), Cognitive Normal (CN), and Mild Cognitive Impairment (MCI). The achieved results showed an accuracy of 98.94% for CN vs AD in the one vs one (1 vs 1) classification with the EfficientNetB0 model and 99.58% for AD vs CNMCI in the one vs All (1 vs All) classification with AlexNet model. In addition, in the study, an accuracy of 98.42% was obtained with the EfficientNet121 model in MCI vs CN classification. These results indicate the significant potential for mild stage Alzheimer's disease detection of Alzheimer's disease. Early detection of the disease in the mild stage is a critical factor in preventing the progression of Alzheimer's disease. In addition, a variant of the non -parametric statistical McNemar's Test was applied to determine the statistical significance of the results obtained in the study. Statistical significance of 1 vs 1 and 1 vs all classifications were obtained for EfficientNetB0, DenseNet, and AlexNet models.Item Fault Detection System For Paper Cup Machine Based On Real-Time Image Processing(Başkent Üniversitesi Mühendislik Fakültesi, 2024-03-31) Aydin, Alaaddin; Guney, SeldaIn the production of paper cups in industrial factories, it is tried to print high quality cups with less waste loss with the help of sensors and heating resistances mounted on the paper cup machine. In this study, a system that detects faulty products based on image processing and removes it by controlling the machine with servo motors, asynchronous motors and programmable logic controller (PLC) is designed. For fault product detection, classification has been performed using real-time Haarcascade algorithm and You Only Look Once (YOLO) algorithm which is a deep learning methods, and real-time object detection has been carried out using the OpenCv library. With this study, an effective faulty product detection and removing hardware system was realized by adapting artificial intelligence algorithms to a machine used in industry. Based on the results, a whole system can be applied to systems that involve removing a faulty product from a band in any production, packaging etc. facility is proposed. A hardware consisting of servo motors, asynchronous motors and PLC was designed to separate faulty cups from the existing paper cup production machine in this study. Then, a data set composed of 1068 images was created with images taken from the camera for faulty and faultless paper cups. Using this dataset, the effect of different deep learning methods on performance in the real-time system has been examined and successful results have been obtained. The optimal outcome was achieved, yielding a real-time application accuracy rate of 90.8% through the utilization of the Yolov5x architecture.