Fakülteler / Faculties
Permanent URI for this communityhttps://hdl.handle.net/11727/1395
Browse
2 results
Search Results
Item Construction of A Bilirubin Biosensor Based on an Albumin-Immobilized Quartz Crystal Microbalance(2017) Kocakulak, Mustafa; Bayrak, Tuncay; Saglam, Sinan; 0000-0001-6826-4350; AAE-3731-2020Bilirubin, a bile pigment, is associated with several diseases and systemic pathologies. The measurement of bilirubin is important for diagnosis and therapy, and many expensive methods are used to measure the bilirubin amount in blood. In this study, a new bilirubin biosensor using quartz crystal microbalances immobilized with albumin is proposed. To measure the effectiveness of the biosensor, a series of experiments was realized with various concentrations of bilirubin, including 1 mg/dL, 2 mg/dL, 5 mg/dL and 10 mg/dL. Comparing blood gas analyzers, laboratory analyzers, skin test devices and nonchemical photometric devices, blood gas analyzers have a range of 0.5-35 mg/dL, laboratory analyzers have a range of 0-30 mg/dL, skin test devices could be used up to 11.7 mg/dL, and nonchemical photometric devices could be evaluated as reliable up to 14.6 mg/dL. The low limit range of the bilirubin detection is between 0.099 mg/dL and 0.146 mg/dL for some special commercial bilirubin measurement devices. Nevertheless, this study presents measurements with a high sensitivity and includes the advantage of reusability by using cheaper materials. To prove albumin immobilization and the bilirubin-albumin interaction atomic force microscopy (AFM) was used, and a good correlation was achieved from AFM images. In conclusion, considering the cost-effectiveness side of the proposed method, a low cost and more sensitive bilirubin measurement device which is effective and reusable was developed instead of the current commercial products. (C) 2017 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.Item Preparation and characterization of novel albumin-sericin nanoparticles as siRNA delivery vehicle for laryngeal cancer treatment(2019) Yalcin, Eda; Kara, Goknur; Celik, Ekin; Pinarli, Ferda Alpaslan; Saylam, Guleser; Sucularli, Ceren; Ozturk, Serhat; Yilmaz, Esin; Bayir, Omer; Korkmaz, Mehmet Hakan; Denkbas, Emir Baki; 31066619Small interfering RNA (siRNA)-based gene silencing strategy has high potential on suppressing specific molecular targets, involved in cancer progression. However, the lack of an effective nanocarrier system that safely delivers siRNA to its target still limits the clinical applications of siRNA. This study aimed to develop albumin-sericin nanoparticles (Alb-Ser NPs) as a novel siRNA delivery system for laryngeal cancer treatment. Nanoparticle formulations composed of albumin and sericin at different ratios (1:1, 2:1, 1:2 w/w) were synthesized by desolvation method. The nanoparticles were modified with poly-L-lysine (PLL) for siRNA binding and decorated with hyaluronic acid (HA) to target laryngeal cancer cell line, Hep-2. HA/PLL/Alb-Ser NPs were individually loaded with siRNAs for casein kinase 2 (CK2), Absent, Small, or Homeotic-Like (ASH2L), and Cyclin D1 genes, which are overexpressed in Hep-2 cells. Downregulation of genes was confirmed by real-time PCR (RT-PCR). Size, morphological, and thermogravimetric characterizations revealed that Alb-Ser NPs having 2:1 (w/w) ratio are the most optimized formulation. Between 36.8 and 61.3% of siRNA entrapment efficiencies were achieved. HA/PLL-siRNA/Alb-Ser (2:1) NPs-mediated gene silencing resulted in a significant inhibition of cell growth and induction of apoptosis in cells. Our findings showed that HA/PLL/Alb-Ser (2:1) NPs were promising as a siRNA carrier.