Fakülteler / Faculties
Permanent URI for this communityhttps://hdl.handle.net/11727/1395
Browse
2 results
Search Results
Item Segmentation of Live and Dead Cells in Tissue Scaffolds(2018) Uyar, Tansel; Erdamar, Aykut; Aksahin, Mehmet F.; Gumusderelioglu, Menemse; Irmak, Gulseren; Erogul, Osman; U-7861-2018Image processing techniques are frequently used for extracting quantitative information (cell area, cell size, cell counting, etc.) from different types of microscopic images. Image analysis in the field of cell biology and tissue engineering is time consuming, and requires personal expertise. In addition, evaluation of the results may be subjective. Therefore, computerbased learning / vision-based applications have been developed rapidly in recent years. In this study, images of the viable pre-osteoblastic mouse MC3T3-E1 cells in tissue scaffolds, which was captured from a bone tissue regeneration study, were analyzed by using image processing techniques. Tissue scaffolds were bioprinted from alginate and alginate-hydroxyapatite polymers. Confocal Laser Scanning Microscope images of the tissue scaffolds were processed in the study. Percentages of live and dead cell area in the scaffolds were determined by using image processing techniques at two different time points of the culture.Item Effects of radiofrequency exposure on in vitro blood-brain barrier permeability in the presence of magnetic nanoparticles(2022) Senturk, Fatih; Cakmak, Soner; Kocum, Ismail Cengiz; Gumusderelioglu, Menemse; Ozturk, Goknur Guler; 35134610The blood-brain barrier (BBB) remains a major obstacle for the delivery of drugs in the treatment of many neurological diseases. In this study, we aimed to investigate the effects of radiofrequency electromagnetic fields (RF-EMFs) on the permeability of an in vitro BBB model under RF exposure alone, or in the presence of nanoparticles (NPs). For this purpose, an in vitro BBB model was established by seeding human umbilical vein endothelial cells (HUVECs) and human glioblastoma cell line (T98G) on the apical and basolateral sides of the transwell membrane, respectively. The integrity of the BBB model was confirmed by measuring transendothelial electrical resistance (TEER), and a fluorescein isothiocyanate (FITC)-dextran permeability assay was performed when the resistance reached 120 U cm(2). After the RFfield exposure (13.56 MHz, 80 W, 10 min), we found that FITC-dextran transported across the in vitro BBB was increased 10-fold compared to FITC-dextran transported without an RF-field. This notable phenomenon, which can be called the burst permeability RF effect (BP-RF), has been proposed for the first time in the literature. Subsequently, the effect of the RF-field on BBB permeability was also investigated in the presence of superparamagnetic iron oxide nanoparticles (SPIONs) and magnetic poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-b-PEG) nanoparticles (m-PNPs). It was found that the amount of both transported NPs on the basolateral sides increased after exposure to the RF-field. As a result, the RFfield can be applied simultaneously during treatment with clinical agents or nanocarriers, improving the permeability of the BBB, which may contribute to therapeutic efficacy of many drugs that are used in neurological diseases. (c) 2022 Elsevier Inc. All rights reserved.