Wos Kapalı Erişimli Yayınlar

Permanent URI for this collectionhttps://hdl.handle.net/11727/10753

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    A Hybrid Simulated Annealing For A Multi-Objective Stochastic Assembly Line Balancing Problem
    (2008) Cakir, Burcin; Dengiz, Berna; Altiparmak, Fulya; Xia, GP; Deng, XQ; 0000-0003-1730-4214; AAF-7020-2021
    Asssembly line balancing is the problem of assigning tasks to the workstations, while optimizing one or more objectives without violating restrictions imposed on the line. In practice, task times may be random due to the worker fatigue, low skill levels, job dissatisfaction, poorly maintained equipment, defects in raw material, etc. When stochastic task times are taken consideration in assembly lines, balancing procedure is more complex due to the probability of incompleteness of stations times in a given cycle time. In this study, a multi-objective simulated annealing algorithm (m_SAA) is proposed for single-model, stochastic assembly line balancing problem with the aim of minimizing of smoothness index and total design cost. To obtain Pareto-optimal solutions, m_SAA implements tabu list and a multinomial probability mass function approach. The effectiveness of the proposed m_SAA is comparatively investigated using another SA using weight-sum approach on the test problems. Computational results show that m_SAA with multinomial probability mass function approach is more effective than SA with weight-sum approach in terms of quality of Pareto-optimal solutions.
  • Item
    A General Neural Network Model for Estimating Telecommunications Network Reliability
    (2009) Altiparmak, Fulya; Dengiz, Berna; Smith, Alice E.; 0000-0003-1730-4214; 0000-0001-8808-0663; AAF-7020-2021; AAK-2318-2021
    This paper puts forth a new encoding method for using neural network models to estimate the reliability of telecommunications networks with identical link reliabilities. Neural estimation is computationally speedy, and can be used during network design optimization by an iterative algorithm such as tabu search, or simulated annealing. Two significant drawbacks of previous approaches to using neural networks to model system reliability are the long vector length of the inputs required to represent the network link architecture, and the specificity of the neural network model to a certain system size. Our encoding method overcomes both of these drawbacks with a compact, general set of inputs that adequately describe the likely network reliability. We computationally demonstrate both the precision of the neural network estimate of reliability, and the ability of the neural network model to generalize to a variety of network sizes, including application to three actual large scale communications networks.
  • Item
    A cross entropy approach to design of reliable networks
    (2009) Dengiz, Berna; Altiparmak, Fulya; 0000-0003-1730-4214; AAF-7020-2021
    One of the most important parameters determining the performance of communication networks is network reliability. The network reliability strongly depends on not only topological layout of the communication networks but also reliability and availability of the communication facilities. The selection of optimal network topology is an NP-hard problem so that computation time of enumeration-based methods grows exponentially with network size. This paper presents a new solution approach based on cross-entropy method, called NCE, to design of communication networks. The design problem is to find a network topology with minimum cost such that all-terminal reliability is not less than a given level of reliability. To investigate the effectiveness of the proposed NCE, comparisons with other heuristic approaches given in the literature for the design problem are carried out in a three-stage experimental study. Computational results show that NCE is an effective heuristic approach to design of reliable networks. (C) 2008 Elsevier B.V. All rights reserved.