Eczacılık Fakültesi / Faculty of Pharmacy
Permanent URI for this collectionhttps://hdl.handle.net/11727/5700
Browse
2 results
Search Results
Item New Ester-Containing Azole Derivatives With Potent Anti-Candida Effects: Synthesis, Antifungal Susceptibility, Cytotoxicity, and Molecular Modeling Studies(DRUG DEVELOPMENT RESEARCH, 2024-11) Ataker, Yusuf; Oncue, Ozge; Gulmez, Dolunay; Sabuncuoglu, Suna; Arikan-Akdagli, Sevtap; Sari, SuatMortalities due to mycoses have dramatically increased with the emergence of drug-resistant strains and growing immune-compromised populations globally. Azole antifungals have been the first choice against fungal infections of a wide spectrum and several azole derivatives with ester function were reported for their potentially promising and favorable activity against Candida spp. In this study, we designed and synthesized a series of 1-(aryl)-2-(1H-imidazol-1-yl/1H-1,2,4-triazol-1-yl)ethyl esters, and tested them against seven reference Candida strains using EUCAST reference microdilution method. Among the series, 6a, 6d, and 6g proved highly potent in vitro compared to fluconazole; especially against Candida albicans and Candida tropicalis with minimum inhibitor concentration (MIC) values as low as 0.125 and 0.06 mg/L, respectively, although their activities against Candida krusei and Candida glabrata remained limited. The compounds also showed minimal toxicity to murine fibroblasts according to the in vitro cytotoxicity tests. Molecular modeling predicted 6g as an orally available druglike compound according to all parameters and CYP51 inhibition as the likely mechanism for their antifungal effects. The study underpins the promise of azoles with ester functionality as a potential scaffold for small-molecule antifungal drug design.Item Potent Antimicrobial Azoles: Synthesis, In Vitro and In Silico Study(ANTIBIOTICS-BASEL, 2024-11) Ozdemir, Zeynep; Zenni, Yaren Nur; Karakurt, Arzu; Sari, Suat; Sarac, Selma; Akdag, Mevluet; Merde, Irem Bozbey; Kart, Didem; Venanzoni, Roberto; Flores, Giancarlo Angeles; Angelini, Paola; Kabier, Muzammil; Mathew, Bijo; Carradori, SimoneBackground/Objectives: The increase in fungal infections, both systemic and invasive, is a major source of morbidity and mortality, particularly among immunocompromised people such as cancer patients and organ transplant recipients. Because of their strong therapeutic activity and excellent safety profiles, azole antifungals are currently the most extensively used systemic antifungal drugs. Antibacterial properties of various topical antifungals, such as oxiconazole, which features oxime ether functionality, were discovered, indicating an exciting prospect in antimicrobial chemotherapy. Methods: In this study, eleven new oxime ether derivatives with the azole scaffold (5a-k) were synthesized and tested for their antimicrobial effects using the microdilution method to obtain broad-spectrum hits. Results: Although the title compounds showed limited efficacy against Candida species, they proved highly effective against dermatophytes. Compounds 5c and 5h were the most potent derivatives against Trichophyton mentagrophytes and Arthroderma quadrifidum, with minimum inhibitory concentration (MIC) values lower than those of the reference drug, griseofulvin. The MIC of 5c and 5h were 0.491 mu g/mL and 0.619 mu g/mL against T. mentagrophytes (MIC of griseofulvin: 2.52 mu g/mL). The compounds were also tested against Gram-positive and Gram-negative bacteria. Briefly, 5c was the most active against Escherichia coli and Bacillus subtilis, with MIC values much better than that of ciprofloxacin (MIC of 5c = 1.56 mu g/mL and 1.23 mu g/mL, MIC of ciprofloxacin = 31.49 and 125.99 mu g/mL, respectively). Molecular docking suggested a good fit in the active site of fungal lanosterol 14 alpha-demethylase (CYP51) and bacterial FtsZ (Filamenting temperature-sensitive mutant Z) protein. Conclusions: As a result, the title compounds emerged as promising entities with broad antifungal and antibacterial effects, highlighting the utility of oxime ether function in the azole scaffold.