Scopus İndeksli Yayınlar Koleksiyonu

Permanent URI for this collectionhttps://hdl.handle.net/11727/4809

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Use Of Deep Learning Methods For Hand Fracture Detection From Plain Hand Radiographs
    (2022) Ureten, Kemal; Sevinc, Huseyin Fatih; Igdeli, Ufuk; Onay, Aslihan; Maras, Yuksel; https://orcid.org/0000-0003-4213-9126; 35099027
    BACKGROUND: Patients with hand trauma are usually examined in emergency departments of hospitals. Hand fractures are frequently observed in patients with hand trauma. Here, we aim to develop a computer-aided diagnosis (CAD) method to assist physicians in the diagnosis of hand fractures using deep learning methods. METHODS: In this study, Convolutional Neural Networks (CNN) were used and the transfer learning method was applied. There were 275 fractured wrists, 257 fractured phalanx, and 270 normal hand radiographs in the raw dataset. CNN, a deep learning method, were used in this study. In order to increase the performance of the model, transfer learning was applied with the pre-trained VGG-16, GoogLeNet, and ResNet-50 networks. RESULTS: The accuracy, sensitivity, specificity, and precision results in Group 1 (wrist fracture and normal hand) dataset were 93.3%, 96.8%, 90.3%, and 89.7% , respectively, with VGG-16, were 88.9%, 94.9%, 84.2%, and 82.4%, respectively, with Resnet-50, and were 88.1%, 90.6%, 85.9%, and 85.3%, respectively, with GoogLeNet. The accuracy, sensitivity, specificity, and precision results in Group 2 (phalanx fracture and normal hand) dataset were 84.0%, 84.1%, 83.8%, and 82.8%, respectively, with VGG-16, were 79.4%, 78.5%, 80.3%, and 79.7%, respectively, with Resnet-50, and were 81.7%, 81.3%, 82.1%, and 81.3%, respectively, with GoogLeNet. CONCLUSION: We achieved promising results in this CAD method, which we developed by applying methods such as transfer learning, data augmentation, which are state-of-the-art practices in deep learning applications. This CAD method can assist physicians working in the emergency departments of small hospitals when interpreting hand radiographs, especially when it is difficult to reach qualified colleagues, such as night shifts and weekends.
  • Item
    Automated Tuberculosis Detection Using Pre-Trained CNN and SVM
    (2021) Oltu, Burcu; Guney, Selda; Dengiz, Berna; Agildere, Muhtesem
    Tuberculosis (TB) is a dreadfully contagious and life-threatening disease if left untreated. Therefore, early and accurate diagnosis is critical for treatment. Today, invasive, expensive, or time-consuming tests are performed for diagnosis. Unfortunately, accurate TB diagnosis is still a major challenge. In the proposed study, a decision support system that can automatically separate normal and TB chest X-ray (CXR) images is presented for objective and accurate diagnosis. In the presented methodology, first various data augmentation methods were applied to the data set, then pre-trained networks (VGG16, MobileNet), were employed as feature extractors from augmented CXR's. Afterward, the extracted features for all images were fed into a support vector machine classifier. In training process, 5-fold cross-validation was applied. As a result of this classification, it was concluded that TB can be diagnosed with an accuracy of 96,6% and an area under the ROC curve (AUC) of 0,99.
  • Item
    Comparative Study for Tuberculosis Detection by Using Deep Learning
    (2021) Karaca, Busra Kubra; Guney, Selda; Dengiz, Berna; Agildere, Muhtesem
    Tuberculosis (TB) is an infectious disease which becomes a significant health problem worldwide. Many people have been affected by this disease owing to deficiency of treatment and late or inaccuracy of diagnosis. Therefore, accurate and early diagnosis is the very major solution to checking and preventing the disease. A chest x-ray is a main diagnostic tool used to diagnose tuberculosis. This diagnostic method is limited by the availability of radiologists and the experience and skills of radiologists in reading x-rays. To overcome such a challenge, a computer-aided diagnosis (CAD) system is supposed for the radiologist to interpret chest x-ray images easily. In this study, a CAD system based upon transfer learning is developed for TB detection using Montgomery Country chest x-ray images. We used the VGG16, VGG19, DenseNet121, MobileNet, and InceptionV3 pre-trained CNN models to extract features automatically and used the Support Vector Machine (SVM) classifier to the detection of tuberculosis. Furthermore, data augmentation techniques were applied to boost the performance results. The proposed method performed the highest accuracy of 98.9% and area under the curve (AUC) of 1.00, respectively, with the DenseNet121 on augmented images.