Scopus İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/11727/4809
Browse
14 results
Search Results
Item The Use of Petri Nets in Performance Analysis of Flexible Manufacturing Cell(2022) Bulca, Fatima Busra; Ic, Yusuf Tansel; Yurdakul, MustafaA Flexible Manufacturing Cell (FMC) is a system that consists of computer-integrated machines, automatic material handling systems, and robots. It produces different part types with minimal worker involvement. Many different methods, such as queuing systems and simulation models, have been applied in FMC modeling in the literature. This study aims to use Petri Nets (PN) in modelling complex FMCs. The study is carried out in the FMC located in the Advanced Manufacturing Systems Laboratory of Baskent University. The FMC consists of a CNC machining center, a material handling robot and a pallet, which has three work-piece carriage capacities. Processing times of FMC elements may vary due to reasons (the power usage performance, air supply efficiency, electrical power efficiency, etc.) arising from the mechanical structure of the system. This uncertainty needs to be taken into account when modeling the system. In this study, the uncertain (fuzzy) processing times associated with the transitions were caused by the mechanical structure of the system. In order to compare with the newly developed fuzzy models, the system was first modeled using Transition Time Petri Nets (TTPN), in which the running times associated with the transition times take precise values. On the other hand, for handling fuzzy values of the actual operating times in the FMC, two models namely, Partial-Fuzzy Transition Time Petri Nets (Partial-FTTPN) and Fuzzy Transition Time Petri Nets (FTTPN) are developed. The results of the three models are compared to analyze the benefits of combining "time uncertainties" resulting from the natural behavior of FMCs.Item Analysis of the Robustness of the Operational Performance Using a Combined Model of the Design of Experiment and Goal Programming Approaches for a Flexible Manufacturing Cell(2023) Ic, Yusuf Tansel; Yurdakul, Mustafa; Dengiz, Berna; Sasmaz, TurgutA combined model of a 2(k) design of experiment (DOE) and goal programming (GP) approaches is presented to determine optimum levels of input variables and analyze their robustness for a multiobjective performance of a flexible manufacturing cell (FMC) in this study. Two main performance metrics, namely, manufacturing lead time (MLT) and surface roughness (SR), are considered performance outputs for the FMC. Machine sequence, robot speed, tool type, and material type are selected as the four input variables on the input side of the proposed model. The study shows that even with a limited number of experiments, one can determine optimum input levels for the multiobjective performance of the FMC and determine their robustness.Item Development of a Goal Programming Model Based on Response Surface and Analytic Hierarchy Process Approaches for Laser Cutting Process Optimization of St-52 Steel Plates(2022) Yurdakul, Mustafa; Tukel, Taha; Ic, Yusuf TanselThis paper presents an integrated model for optimization of laser cutting process of St-52 steel plates with multiple performance characteristics using Goal Programming (GP), Analytic Hierarchy Process (AHP), and Response Surface Methodology (RSM) approaches. In this study, optimum levels of the laser cutting process input parameters namely, material thickness, cutting speed, laser power, and assist gas pressure are obtained. For optimization purposes, four different surface roughness types of a cut surface, surface hardness, cutting time, and heat-affected zone (HAZ) of the cut surface are considered as performance outputs (responses) in this study. Optimization of multiple performance objectives (responses) requires obtaining regression functions with RSM first, and then weighting the regression functions using the AHP and finally combining the multiple functions into a single overall goal within a GP model and solving the model to optimize the laser cutting process. The study clearly shows that the presented optimization model is flexible enough to optimize the laser cutting process for various scenarios and conflicting priorities.Item Analysis of the manufacturing flexibility parameters with effective performance metrics: a new interactive approach based on modified TOPSIS-Taguchi method(2022) Ic, Yusuf Tansel; Sasmaz, Turgut; Yurdakul, Mustafa; Dengiz, Berna; 0000-0001-9274-7467; AGE-3003-2022Flexibility is one of the most important strategy parameters to achieve a long-term successful performance for a manufacturing company. Studies in the literature aim to operate a manufacturing system at optimum levels of flexibility parameters under its own manufacturing environment. This study aims to present an interactive analysis framework based on TOPSIS and Taguchi parameter design principles for investigating the effects of different levels of flexibility parameters on the performance of a flexible manufacturing cell (FMC). The main performance metric used in this study is manufacturing lead time. Other important metrics to evaluate quality control and inspection policies are also investigated in this study. To conclude, a combined model of an interactive approach based on TOPSIS and Taguchi methods are used to assess the effectiveness of the flexibility parameters for a FMC.Item Development and comparison of airplane fuselage panel assembly system alternatives using axiomatic design principles and simulation methodology(2022) Celek, Osman Emre; Yurdakul, Mustafa; Ic, Yusuf Tansel; 0000-0001-9274-7467; AGE-3003-2022This paper presents a combined usage of axiomatic design principles and simulation in developing and comparison of alternative assembly systems for airplane fuselage panels. In the application, four assembly system alternatives are obtained with axiomatic design methodology; and their performance results are obtained using simulation. The simulation results are made available for system designers to see each alternative's capabilities and make a comparison among the alternatives. The application of the proposed combined application of axiomatic design principles and simulation provides a reference guide for system designers to apply in designing other assembly systems' design.Item Risk-based inspection planning for internal surface defected oil pipelines exposed to fatigue(2022) Sozen, Levent; Yurdakul, Mustafa; Ic, Yusuf TanselThe pipelines should be inspected periodically to minimize the probability of failure. The timing of these periodic inspections can be determined by a risk assessment that considers the probability of failure of the pipeline and the potential undesirable effects of the chemical transferred. These are referred to as risk-based inspection methods in the literature. We evaluate pipelines with internal surface defects and under the effect of variable pressure in this study. Internal surface defects were considered production-related, and there is a lack of studies in the literature examining such kinds of defects. These defects generate the concentration of stress on the pipeline section. The reliability variation of the pipeline depends on some factors, namely, surface defect ge-ometry, the pipe section geometry, and the mechanical properties of the pipe. Fatigue is accepted as the crucial damage mechanism. The cause of variable load is considered as the number of operations. As a result of the study, the probability of fatigue failure for pipelines with internal surface defects was evaluated. Then, a new approach was proposed for risk-based inspection planning of the pipelines. As a case study, the probability of fatigue failure on a fuel pipeline established between a refinery and an oil terminal operating in Turkey was calculated. Also, we tried to determine the most appropriate inspection time. The data used in the planning phase was collected from a measurement process performed on the pipeline using PIG (Pipe Inspection Gauge). Finite element analysis was used to calculate stress concentration factors. Finally, we used the Monte Carlo simulation method to obtain the probability of failure.Item Understanding the Effect of Assignment of Importance Scores of Evaluation Criteria Randomly in the Application of DOE-TOPSIS in Decision Making(2019) Ic, Yusuf Tansel; Yurdakul, Mustafa; 0000-0001-9274-7467; AGE-3003-2022In conventional applications of hybrid DoE-TOPSIS technique in decision making problems, full factorial design layouts are generally used because of their ability to measure the effects of all possible combinations for evaluation factors. In a typical application, for a design layout, a number of replications are generated by assigning different sets of relative importance scores for evaluation factors. A TOPSIS score is then obtained for each experiment and replication pair. Regression analysis is finally applied to obtain a relationship with inputs (values of evaluation factors) and outputs (alternatives' TOPSIS meta-model scores). The key in conventional application of hybrid DoE-TOPSIS technique is generation of relative importance scores. Each set of scores can be assigned by a decision maker or generated randomly. This paper aims to determine whether using either of the two methods in determination of relative importance scores makes any difference in the ranking orders of alternatives.Item Determination of periodic inspection time in pressurized equipment exposed to fatigue by estimating the probability of fracture(2021) Sozen, Levent; Yurdakul, Mustafa; Ic, Yusuf Tansel; 0000-0001-9274-7467; AGE-3003-2022It is essential to inspect the pressurized equipment such as vessels, pipes, heat exchangers, boilers, etc., which are under the influence of variable load periodically to minimize the possibility of damage occurring or early disclosure of existing damage. These inspections may be carried out at fixed time intervals or can be carried out at determined intervals depending on a risk assessment that considers settlement of the equipment, operating conditions, and the potential danger of the equipment's chemical contained. Within the scope of this study, we evaluate the thin-walled pressurized equipment under variable internal pressure load. Special attention is crucial to the hot points where the stress is relatively high for inspection of fatigue-related damage on the equipment. We know that stress concentration factors are critical in welded zones in thin-walled pressure vessels. Therefore, the fatigue crack formation in the welded joints is more likely than the equipment's base metal. As a result of the study, we present the probability of time-dependent damage under the effect of fatigue caused by variable internal pressure for butt welded joints. Also, we propose a new approach for periodic control planning. As a case study, damage probabilities of the fuel or gas pipelines operating under variable pressure are calculated based on the diversity of the mentioned parameters, and a new approach is provided to determine the most suitable periodic inspection interval.Item Development of a new trapezoidal fuzzy AHP-TOPSIS hybrid approach for manufacturing firm performance measurement(2021) Ic, Yusuf Tansel; Yurdakul, Mustafa; 0000-0001-9274-7467; AGE-3003-2022This study develops a multi-level hierarchical performance measurement model to measure a manufacturing firm's overall performance score by grading its success levels in critical operations and combining them. Linking overall performance score to local grades of a manufacturing firm in critical operations requires placement of manufacturing goals in the performance measurement model. The relative importance scores of the components at any level in the multi-level performance measurement model with respect to each component belonging to the immediately above level are determined using the fuzzy analytic hierarchy process (FAHP) method. The relative importance scores of the components are combined with success grades in seventeen pre-determined critical operations to obtain overall performance scores for manufacturing firms using the technique for order preference by similarity to ideal solution (TOPSIS) approach. In this study, scorecards are developed to guide scoring in each critical operation by checking levels of success in terms of practices, infrastructures, investments and actions. The developed performance measurement approach provides a structured decision-making environment with the scorecards and fixed hierarchy. Furthermore, the developed approach is more comprehensive in representing important issues necessary for obtaining realistic overall performance scores. For example, fuzzy numbers take into account vagueness (uncertainties) in the assignment of scores. Another advantage identified by the users is that the developed decision hierarchy can be adapted to new sectors or decision environments by adding new components or removing existing ones using the same overall structure and calculation steps.Item A knowledge-based material selection system for interactive pressure vessel design(2020) Yurdakul, Mustafa; Balci, Arif; Ic, Yusuf Tansel; AAI-1081-2020Continual introduction of new materials and improvements in existing materials increase the variety of materials that can be used for pressure vessel components. Among wide variety of materials, the most suitable one must be selected for a component by matching its functional requirements with various available materials' specifications. This study proposes an interactive knowledge-based decision support system for selecting the most suitable material for a given pressure vessel component and its working environment. The developed decision support system, namely Pressure Vessel SELection (PVSEL), consists of two separate phases. In the first elimination phase of PVSEL, the user obtains a feasible set of alternative materials by answering various questions and providing lower-limit values at materials' critical specifications. PVSEL, then, uses a ranking phase which uses ELECTRE, TOPSIS and VIKOR methods to rank the feasible materials. In the second phase, each alternative material's ranking is determined by combining its performance values at weighted critical specifications (selection criteria), which are considered as important in meeting the functional requirements of the component. Usage of PVSEL is illustrated in the paper and the results show that the proposed PVSEL is an effective selection tool and provides meaningful results for the designers.