Scopus İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/11727/4809
Browse
2 results
Search Results
Item Diagnosis of Attention Deficit Hyperactivity Disorder with combined time and frequency features(2020) Altinkaynak, Miray; Dolu, Nazan; Guven, Aysegul; Pektas, Ferhat; Ozmen, Sevgi; Demirci, Esra; Izzetoglu, Meltem; 0000-0002-3104-7587; AAG-4494-2019The aim of this study was to build a machine learning model to discriminate Attention Deficit Hyperactivity Disorder (ADHD) patients and healthy controls using information from both time and frequency analysis of Event Related Potentials (ERP) obtained from Electroencephalography (EEG) signals while participants performed an auditory oddball task. The study included 23 unmedicated ADHD patients and 23 healthy controls. The EEG signal was analyzed in time domain by nonlinear brain dynamics and morphological features, and in time-frequency domain with wavelet coefficients. Selected features were applied to various machine learning techniques including; Multilayer Perceptron, Naive Bayes, Support Vector Machines, k-nearest neighbor, Adaptive Boosting, Logistic Regression and Random Forest to classify ADHD patients and healthy controls. Longer P300 latencies and smaller P300 amplitudes were observed in ADHD patients relative to controls. In fractal dimension calculation relative to the control group, the ADHD group demonstrated reduced complexity. In addition, certain wavelet coefficients provided significantly different values in both groups. Combining these extracted features, our results indicated that Multilayer Perceptron method provided the best classification with an accuracy rate of 91.3% and a high level of reliability of concurrence (Kappa = 0.82). The results showed that combining time and frequency domain features can be a useful and discriminative for diagnostic purposes in ADHD. The study presents a supporting diagnostic tool that uses EEG signal processing and machine learning algorithms. The findings would be helpful in the objective diagnosis of ADHD. (C) 2020 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.Item Evaluation of divided attention using different stimulation models in event-related potentials(2019) Batbat, Turgay; Gueven, Aysegul; Dolu, Nazan; 0000-0002-3104-7587; 31352660; AAG-4494-2019Divided attention is defined as focusing on different tasks at once, and this is described as one of the biggest problems of today's society. Default examinations for understanding attention are questionnaires or physiological signals, like evoked potentials and electroencephalography. Physiological records were obtained using visual, auditory, and auditory-visual stimuli combinations with 48 participants-18-25-year-old university students-to find differences between sustained and divided attention. A Fourier-based filter was used to get a 0.01-30-Hz frequency band. Fractal dimensions, entropy values, power spectral densities, and Hjorth parameters from electroencephalography and P300 components from evoked potentials were calculated as features. To decrease the size of the feature set, some features, which yield less detail level for data, were eliminated. The visual and auditory stimuli in selective attention were compared with the divided attention state, and the best accuracy was found to be 88.89% on a support vector machine with linear kernel. As a result, it was seen that divided attention could be more difficult to determine from selective attention, but successful classification could be obtained with appropriate methods. Contrary to literature, the study deals with the infrastructure of attention types by working on a completely healthy and attention-high group.