Mühendislik Fakültesi / Faculty of Engineering
Permanent URI for this collectionhttps://hdl.handle.net/11727/1401
Browse
4 results
Search Results
Item Classification of Different Objects with Artificial Neural Networks Using Electronic Nose(2015) Ozsandikcioglu, Umit; Atasoy, Ayten; Guney, Selda; 0000-0002-5397-6301; 0000-0003-1188-2902; 0000-0002-0573-1326; AAR-4368-2020; HJH-3630-2023; AAC-7404-2020In this paper; an e-nose with low cost which consisting of 8 different gas sensors was used and with this e-nose 9 different odors ((mint, lemon, egg, rotten egg, angelica root, nail polish, naphthalene, rose water, and acetone) was classified. This 9 different odor are classified with Artificial Neural Networks and by using different activation functions, and then the successes of the classification were compared with each other. The maximum success of the testing data is obtained with 100% accuracy rate by using logsig activation function in hidden layer and tansig activation function in output layer. In conclusion; using the chemical database containing the odor of the different objects, distinct odors were shown to be classified correctly.Item Detection of Visual Impairment From Retinal Fundus Images with Deep Learning(2022) Olcer, Didem; Erdas, Cagatay BerkeItem Context-Sensitive Model Learning for Lung Nodule Detection(2016) Ogul, B. Buket; Ogul, Hasan; Sumer, Emre; AGA-5711-2022Nodule detection in chest radiographs is a main component of current Computer Aided Diagnosis (CAD) systems. The problem is usually approached as a supervised classification task of candidate nodule segments. To this end, a discriminative model is learnt from predefined set of features. A key concern with this approach is the fact that some normal tissues are also imaged and these regions can overlap with the lung tissue as to hide the nodules. These overlaps may reduce the discriminative ability of extracted features and increase the number of false positives accordingly. In this study, we offer to learn distinct models for bone and normal tissue regions following to the segmentation of ribs, which are often the major reason for false positives. Thus, the nodule candidates in bone and normal tissue regions can be assessed in context-sensitive way. The experiments on a common benchmark set determine that the proposed approach can significantly recue the false positives while preserving the sensitivity of detections.Item Development of a MFCC-SVM Based Turkish Speech Recognition System(2016) Tombaloglu, Burak; Erdem, HamitIn this study, a SVM-MFCC based Turkish Speech Recognition system is devoloped. In the structure, Mel Frequency Cepstral Coefficients (MFCC) are used for feature extraction and Support Vector Machines(SVM) are used for classification of the phonemes. Three more phoneme recognition methods are applied to same dataset and their perfomance is compared. The applied methods are the combination of the Linear Prediction Cepstral Coefficients (LPCC), which is a commonly used method of feature extraction and Hidden Markov Method (HMM) which is a known classification method. The applied feature extraction and classification methods has been selected due to phoneme-based property of the Turkish language.