Mühendislik Fakültesi / Faculty of Engineering

Permanent URI for this collectionhttps://hdl.handle.net/11727/1401

Browse

Search Results

Now showing 1 - 7 of 7
  • Item
    Investigating Transfer Learning Performances of Deep Learning Models for Classification of GPR B-Scan Images
    (2022) Dikmen, Mehmet
    Recent advances in deep learning models have made them the state-of-the art method for image classification. Due to this success, they have been applied to many areas, such as satellite image processing, medical image interpretation, video processing, etc. Recently, deep learning models have been utilized for processing Ground Penetrating Radar (GPR) data as well. However, studies general focus on building new Convolutional Neural Network (CNN) models instead of utilizing baseline ones. This paper investigates the usefulness of existing baseline CNN models for classifying GPR B-scan images and aims to determine how well pre-trained models perform. To that end, a real bridge deck GPR data, DECKGPRHv1.0 dataset was used to evaluate the transfer learning performances of various CNN models. Different variants of the models in terms of varying depths and number of parameters were also considered and evaluated in a comparative manner. Although it is an older model, ResNet achieved the best results with 0.998 accuracy. The experimental results showed that there is generally a direct correlation between the simplicity of the model and its success. Overall, it is concluded that near perfect results are possible by just adapting pretrained models to the problem without fine-tuning.
  • Item
    Feature-level Fusion of Deep Convolutional Neural Networks for Sketch Recognition on Smartphones
    (2017) Boyaci, Emel; Sert, Mustafa; 0000-0002-7056-4245; AAB-8673-2019
  • Item
    DeepMBS: Prediction of Protein Metal Binding-Site Using Deep Learning Networks
    (2017) Haberal, Ismail; Ogul, Hasan; 0000-0002-8647-4295; AAJ-8956-2021
    The tertiary structure of a protein indicates what vital function that protein fulfills in the cell. Prediction of the metal binding comformation of a protein from its sequence is a crucial step in predicting its tertiary structure. In this study, a computational method was developed for predicting the binding of Histidine and Cysteine to metals. We propose a deep convolutional neural network architecture, DeepMBS, to predict protein metal binding sites. To our knowledge, this study is the first realization of deep learning idea for the problem of predicting metal binding site. The method allows automatic extraction of complex interactions between important features using only sequence information by utilizing PAM120 scoring matrix. Features were extracted from protein sequences obtained from the Protein Data Bank and deep convolutional neural network was applied to these features. According to experimental results on a benchmark dataset, metal binding states can be predicted with 82% recall and 79% precision. These results show that a better performance can be achived with deep learning approach compared with previous studies on the same dataset.
  • Item
    A deep learning approach for sepsis monitoring via severity score estimation
    (2021) Asuroglu, Tunc; Ogul, Hasan; 33157471
    Background and objective: Sepsis occurs in response to an infection in the body and can progress to a fatal stage. Detection and monitoring of sepsis require multi-step analysis, which is time-consuming, costly and requires medically trained personnel. A metric called Sequential Organ Failure Assessment (SOFA) score is used to determine the severity of sepsis. This score depends heavily on laboratory measurements. In this study, we offer a computational solution for quantitatively monitoring sepsis symptoms and organ systems state without laboratory test. To this end, we propose to employ a regression-based analysis by using only seven vital signs that can be acquired from bedside in Intensive Care Unit (ICU) to predict the exact value of SOFA score of patients before sepsis occurrence. Methods: A model called Deep SOFA-Sepsis Prediction Algorithm (DSPA) is introduced. In this model, we combined Convolutional Neural Networks (CNN) features with Random Forest (RF) algorithm to predict SOFA scores of sepsis patients. A subset of Medical Information Mart in Intensive Care (MIMIC) III dataset is used in experiments. 5154 samples are extracted as input. Ten-fold cross validation test are carried out for experiments. Results: We demonstrated that our model has achieved a Correlation Coefficient (CC) of 0.863, a Mean Absolute Error (MAE) of 0.659, a Root Mean Square Error (RMSE) of 1.23 for predictions at sepsis onset. The accuracies of SOFA score predictions for 6 hours before sepsis onset were 0.842, 0.697, and 1.308, in terms of CC, MAE and RMSE, respectively. Our model outperformed traditional machine learning and deep learning models in regression analysis. We also evaluated our model's prediction performance for identifying sepsis patients in a binary classification setup. Our model achieved up to 0.982 AUC (Area Under Curve) for sepsis onset and 0.972 AUC for 6 hours before sepsis, which are higher than those reported by previous studies. Conclusions: By utilizing SOFA scores, our framework facilitates the prognose of sepsis and infected organ systems state. While previous studies focused only on predicting presence of sepsis, our model aims at providing a prognosis solution for sepsis. SOFA score estimation process in ICU depends on laboratory environment. This dependence causes delays in treating patients, which in turn may increase the risk of complications. By using easily accessible non-invasive vital signs that are routinely collected in ICU, our framework can eliminate this delay. We believe that the estimation of the SOFA score will also help health professionals to monitor organ states. (C) 2020 Elsevier B.V. All rights reserved.
  • Item
    Classification of Canine Maturity and Bone Fracture Time Based on X-Ray Images of Long Bones
    (2021) Ergun, Gulnur Begum; Guney, Selda; 0000-0002-0573-1326; 0000-0001-8469-5484
    Veterinarians use X-rays for almost all examinations of clinical fractures to determine the appropriate treatment. Before treatment, vets need to know the date of the injury, type of the broken bone, and age of the dog. The maturity of the dog and the time of the fracture affects the approach to the fracture site, the surgical procedure and needed materials. This comprehensive study has three main goals: determining the maturity of the dogs (Task 1), dating fractures (Task 2), and finally, detecting fractures of the long bones in dogs (Task 3). The most popular deep neural networks are used: AlexNet, ResNet-50 and GoogLeNet. One of the most popular machine learning algorithms, support vector machines (SVM), is used for comparison. The performance of all sub-studies is evaluated using accuracy and F1 score. Each task has been successful with different network architecture. ResNet-50, AlexNet and GoogLeNet are the most successful algorithms for the three tasks, with F1 scores of 0.75, 0.80 and 0.88, respectively. Data augmentation is performed to make models more robust, and the F1 scores of the three tasks were 0.80, 0.81, and 0.89 using ResNet-50, which is the most successful model. This preliminary work can be developed into support tools for practicing veterinarians that will make a difference in the treatment of dogs with fractured bones. Considering the lack of work in this interdisciplinary field, this paper may lead to future studies.
  • Item
    Automated Tuberculosis Detection Using Pre-Trained CNN and SVM
    (2021) Oltu, Burcu; Guney, Selda; Dengiz, Berna; Agildere, Muhtesem
    Tuberculosis (TB) is a dreadfully contagious and life-threatening disease if left untreated. Therefore, early and accurate diagnosis is critical for treatment. Today, invasive, expensive, or time-consuming tests are performed for diagnosis. Unfortunately, accurate TB diagnosis is still a major challenge. In the proposed study, a decision support system that can automatically separate normal and TB chest X-ray (CXR) images is presented for objective and accurate diagnosis. In the presented methodology, first various data augmentation methods were applied to the data set, then pre-trained networks (VGG16, MobileNet), were employed as feature extractors from augmented CXR's. Afterward, the extracted features for all images were fed into a support vector machine classifier. In training process, 5-fold cross-validation was applied. As a result of this classification, it was concluded that TB can be diagnosed with an accuracy of 96,6% and an area under the ROC curve (AUC) of 0,99.
  • Item
    Detection of Basic Human Physical Activities With Indoor Outdoor Information Using Sigma-Based Features and Deep Learning
    (2019) Memis, Gokhan; Sert, Mustafa; 0000-0002-5758-4321; 0000-0002-7056-4245; AAB-8673-2019
    The devices created on account of the developments in wearable technology are increasingly becoming a part of our daily lives. In particular, sensors have enhanced the usefulness of such devices. The aim of this paper is to detect human physical activity along with indoor/outdoor information by using mobile phones and a separate oxygen saturation sensor. There is no relevant dataset in the literature for this type of detection. For this purpose, data from four different types of human physical activity was collected through mobile phone and oxygen saturation sensors; 12 people aged between 20-65 years participated in the study. During the data collection process, different physical activities under different environmental conditions were performed by the subjects in 10 min. As a next step, a novel deep neural network (DNN) model specifically designed for physical activity recognition was proposed. In order to improve accuracy and reduce the computational complexity, standard deviation (sigma)-based features were introduced. To evaluate its efficacy, we conducted comparisons with selected machine learning algorithms on our proposed dataset. The results on our dataset indicate that the multimodal sigma-based features give the best classification accuracy of 81.60% using our proposed DNN method. Furthermore, the accuracy of the classification made with our proposed DNN method without sigma-based features was 79.04%.