Mühendislik Fakültesi / Faculty of Engineering
Permanent URI for this collectionhttps://hdl.handle.net/11727/1401
Browse
2 results
Search Results
Item Sleep Apnea Detection Using Blood Pressure Signal(2018) Aksahin, Mehmet Feyzi; Oltu, Burcu; Karaca, Busra KubraSleep apnea is a common respiratory disease. Apnea affects sleep quality, reduces people's life standards, and it can result in death at advanced stage. Therefore the ability to detect the apnea quickly and accurately is important for the treatment of this disease. Apnea is diagnosed by specialists however this is a long and exhausting process. Accordingly, a decision support system that automatically diagnoses apnea has been developed to facilitate this process and make it more objective. The developed decision support system in this study is based on patient's blood pressure signals instead of traditional Polysomnography (PSG) records, which requires various physiological signals measured from the patients. In the examined blood pressure signals, the change that results from each heart beat was determined and heart rate variability (HRV) was calculated based on these changes. At the same time, maximum and minimum amplitude values were found for each change period and amplitude variability vector was created. The features for each epoch were determined using the generated amplitude variability vector and HRV data. Presence of apnea in each epoch is classified with determined features and with the use of "Quadratic SVM" classifier. The Quadratic SVM classifier was trained with 87.5% accuracy and then the system is tested. As a result 75.4% sensitivity and 75% positive predictive values were obtained.Item Automated Tuberculosis Detection Using Pre-Trained CNN and SVM(2021) Oltu, Burcu; Guney, Selda; Dengiz, Berna; Agildere, MuhtesemTuberculosis (TB) is a dreadfully contagious and life-threatening disease if left untreated. Therefore, early and accurate diagnosis is critical for treatment. Today, invasive, expensive, or time-consuming tests are performed for diagnosis. Unfortunately, accurate TB diagnosis is still a major challenge. In the proposed study, a decision support system that can automatically separate normal and TB chest X-ray (CXR) images is presented for objective and accurate diagnosis. In the presented methodology, first various data augmentation methods were applied to the data set, then pre-trained networks (VGG16, MobileNet), were employed as feature extractors from augmented CXR's. Afterward, the extracted features for all images were fed into a support vector machine classifier. In training process, 5-fold cross-validation was applied. As a result of this classification, it was concluded that TB can be diagnosed with an accuracy of 96,6% and an area under the ROC curve (AUC) of 0,99.