Mühendislik Fakültesi / Faculty of Engineering

Permanent URI for this collectionhttps://hdl.handle.net/11727/1401

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Development of a Decision Support System for Selection of Reviewers to Evaluate Research and Development Projects
    (2023) Kocak, Serdar; Ic, Yusuf Tansel; Sert, Mustafa; Atalay, Kumru Didem; Dengiz, Berna
    The evaluation of Research and Development (R&D) projects consists of many steps depending on the government funding agencies and the support program. It is observed that the reviewer evaluation reports have a crucial impact on the support decisions of the projects. In this study, a decision support system (DSS), namely R&D Reviewer, is developed to help the decision-makers with the assignment of the appropriate reviewer to R&D project proposals. It is aimed to create an artificial intelligence-based decision support system that enables the classification of Turkish R&D projects with natural language processing (NLP) methods. Furthermore, we examine the reviewer ranking process by using fuzzy multi-criteria decision-making methods. The data in the database is processed primarily to classify the R&D projects and the word embedding model NLP, "Word2Vec". Also, we designed the Convolutional Neural Network (CNN) model to select the features by using the automatic feature learning approach. Moreover, we incorporate a new integrated hesitant fuzzy VIKOR and TOPSIS methodology into the developed DSS for the reviewer ranking process.
  • Item
    The development of a reviewer selection method: a multi-level hesitant fuzzy VIKOR and TOPSIS approaches
    (2021) Kocak, Serdar; Ic, Yusuf Tansel; Atalay, Kumru Didem; Sert, Mustafa; Dengiz, Berna; 0000-0001-9274-7467; AGE-3003-2022
    This paper proposes a new approach for the selection of reviewers to evaluate research and development (R&D) projects using a new integrated hesitant fuzzy VIKOR and TOPSIS methodology. A reviewer selection model must have a multi-level framework in which reviewer selection strategies and related objectives guide the second level of the reviewer performance ranking process. The model must measure reviewer performance related to the activities that are necessary for the R&D project evaluation to be successful. A novel model is presented in this paper. In the proposed methodology, the aim is to select a reviewer in a hierarchical decision-making structure. The selection criteria values and their weights were obtained using the hesitant fuzzy VIKOR method. For the selection of a suitable reviewer, the conventional TOPSIS model was used. We developed a simpler procedure for effectively performing the reviewer selection process. The new approach was tested with a real case study and satisfactory results were obtained. A comparative analysis is also included in the article for illustrative purposes.