Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
Permanent URI for this communityhttps://hdl.handle.net/11727/4806
Browse
2 results
Search Results
Item Use Of Deep Learning Methods For Hand Fracture Detection From Plain Hand Radiographs(2022) Ureten, Kemal; Sevinc, Huseyin Fatih; Igdeli, Ufuk; Onay, Aslihan; Maras, Yuksel; https://orcid.org/0000-0003-4213-9126; 35099027BACKGROUND: Patients with hand trauma are usually examined in emergency departments of hospitals. Hand fractures are frequently observed in patients with hand trauma. Here, we aim to develop a computer-aided diagnosis (CAD) method to assist physicians in the diagnosis of hand fractures using deep learning methods. METHODS: In this study, Convolutional Neural Networks (CNN) were used and the transfer learning method was applied. There were 275 fractured wrists, 257 fractured phalanx, and 270 normal hand radiographs in the raw dataset. CNN, a deep learning method, were used in this study. In order to increase the performance of the model, transfer learning was applied with the pre-trained VGG-16, GoogLeNet, and ResNet-50 networks. RESULTS: The accuracy, sensitivity, specificity, and precision results in Group 1 (wrist fracture and normal hand) dataset were 93.3%, 96.8%, 90.3%, and 89.7% , respectively, with VGG-16, were 88.9%, 94.9%, 84.2%, and 82.4%, respectively, with Resnet-50, and were 88.1%, 90.6%, 85.9%, and 85.3%, respectively, with GoogLeNet. The accuracy, sensitivity, specificity, and precision results in Group 2 (phalanx fracture and normal hand) dataset were 84.0%, 84.1%, 83.8%, and 82.8%, respectively, with VGG-16, were 79.4%, 78.5%, 80.3%, and 79.7%, respectively, with Resnet-50, and were 81.7%, 81.3%, 82.1%, and 81.3%, respectively, with GoogLeNet. CONCLUSION: We achieved promising results in this CAD method, which we developed by applying methods such as transfer learning, data augmentation, which are state-of-the-art practices in deep learning applications. This CAD method can assist physicians working in the emergency departments of small hospitals when interpreting hand radiographs, especially when it is difficult to reach qualified colleagues, such as night shifts and weekends.Item Classification of Canine Maturity and Bone Fracture Time Based on X-Ray Images of Long Bones(2021) Ergun, Gulnur Begum; Guney, Selda; 0000-0002-0573-1326; 0000-0001-8469-5484Veterinarians use X-rays for almost all examinations of clinical fractures to determine the appropriate treatment. Before treatment, vets need to know the date of the injury, type of the broken bone, and age of the dog. The maturity of the dog and the time of the fracture affects the approach to the fracture site, the surgical procedure and needed materials. This comprehensive study has three main goals: determining the maturity of the dogs (Task 1), dating fractures (Task 2), and finally, detecting fractures of the long bones in dogs (Task 3). The most popular deep neural networks are used: AlexNet, ResNet-50 and GoogLeNet. One of the most popular machine learning algorithms, support vector machines (SVM), is used for comparison. The performance of all sub-studies is evaluated using accuracy and F1 score. Each task has been successful with different network architecture. ResNet-50, AlexNet and GoogLeNet are the most successful algorithms for the three tasks, with F1 scores of 0.75, 0.80 and 0.88, respectively. Data augmentation is performed to make models more robust, and the F1 scores of the three tasks were 0.80, 0.81, and 0.89 using ResNet-50, which is the most successful model. This preliminary work can be developed into support tools for practicing veterinarians that will make a difference in the treatment of dogs with fractured bones. Considering the lack of work in this interdisciplinary field, this paper may lead to future studies.