Wos İndeksli Açık & Kapalı Erişimli Yayınlar

Permanent URI for this communityhttps://hdl.handle.net/11727/10751

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    A knowledge-based material selection system for interactive pressure vessel design
    (2020) Yurdakul, Mustafa; Balci, Arif; Ic, Yusuf Tansel; AAI-1081-2020
    Continual introduction of new materials and improvements in existing materials increase the variety of materials that can be used for pressure vessel components. Among wide variety of materials, the most suitable one must be selected for a component by matching its functional requirements with various available materials' specifications. This study proposes an interactive knowledge-based decision support system for selecting the most suitable material for a given pressure vessel component and its working environment. The developed decision support system, namely Pressure Vessel SELection (PVSEL), consists of two separate phases. In the first elimination phase of PVSEL, the user obtains a feasible set of alternative materials by answering various questions and providing lower-limit values at materials' critical specifications. PVSEL, then, uses a ranking phase which uses ELECTRE, TOPSIS and VIKOR methods to rank the feasible materials. In the second phase, each alternative material's ranking is determined by combining its performance values at weighted critical specifications (selection criteria), which are considered as important in meeting the functional requirements of the component. Usage of PVSEL is illustrated in the paper and the results show that the proposed PVSEL is an effective selection tool and provides meaningful results for the designers.
  • Thumbnail Image
    Item
    Development of a decision support system to select materials for pressure vessels
    (2018) Ic, Yusuf Tansel; Balci, Arif; Yurdakul, Mustafa; AAI-1081-2020
    Improvements in technologies applied in material field and continual increase in the number of material types force to develop and use new approaches in material selection. In this paper, a multi-criteria decision support system, called MATSEL, is developed to make material selection decisions for pressure vessel components more thorough and inclusive. MATSEL consists of two separate stages. In the first elimination stage of the MATSEL, it obtains a feasible set of materials for a specified pressure vessel component. MATSEL, then, uses three different multi criteria approaches namely ELECTRE, TOPSIS and VIKOR in the second stage to rank the feasible materials. An overall total score is obtained by summing the rankings of every feasible material and MATSEL proposes the material with the lowest total score as the most suitable one for the specified component. In this study, the statistical similarities between the rankings are also calculated to analyze the differences between rankings if there are any. Instead of inputting the materials every time MATSEL is used, a material data base is formed with the usage of ASME (American Society of Mechanical Engineers) and Ashby material selection diagrams for selection of alternative materials for the specified application.