Scopus İndeksli Açık & Kapalı Erişimli Yayınlar

Permanent URI for this communityhttps://hdl.handle.net/11727/10752

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Automated Tuberculosis Detection Using Pre-Trained CNN and SVM
    (2021) Oltu, Burcu; Guney, Selda; Dengiz, Berna; Agildere, Muhtesem
    Tuberculosis (TB) is a dreadfully contagious and life-threatening disease if left untreated. Therefore, early and accurate diagnosis is critical for treatment. Today, invasive, expensive, or time-consuming tests are performed for diagnosis. Unfortunately, accurate TB diagnosis is still a major challenge. In the proposed study, a decision support system that can automatically separate normal and TB chest X-ray (CXR) images is presented for objective and accurate diagnosis. In the presented methodology, first various data augmentation methods were applied to the data set, then pre-trained networks (VGG16, MobileNet), were employed as feature extractors from augmented CXR's. Afterward, the extracted features for all images were fed into a support vector machine classifier. In training process, 5-fold cross-validation was applied. As a result of this classification, it was concluded that TB can be diagnosed with an accuracy of 96,6% and an area under the ROC curve (AUC) of 0,99.
  • Item
    Comparative Study for Tuberculosis Detection by Using Deep Learning
    (2021) Karaca, Busra Kubra; Guney, Selda; Dengiz, Berna; Agildere, Muhtesem
    Tuberculosis (TB) is an infectious disease which becomes a significant health problem worldwide. Many people have been affected by this disease owing to deficiency of treatment and late or inaccuracy of diagnosis. Therefore, accurate and early diagnosis is the very major solution to checking and preventing the disease. A chest x-ray is a main diagnostic tool used to diagnose tuberculosis. This diagnostic method is limited by the availability of radiologists and the experience and skills of radiologists in reading x-rays. To overcome such a challenge, a computer-aided diagnosis (CAD) system is supposed for the radiologist to interpret chest x-ray images easily. In this study, a CAD system based upon transfer learning is developed for TB detection using Montgomery Country chest x-ray images. We used the VGG16, VGG19, DenseNet121, MobileNet, and InceptionV3 pre-trained CNN models to extract features automatically and used the Support Vector Machine (SVM) classifier to the detection of tuberculosis. Furthermore, data augmentation techniques were applied to boost the performance results. The proposed method performed the highest accuracy of 98.9% and area under the curve (AUC) of 1.00, respectively, with the DenseNet121 on augmented images.