Scopus İndeksli Açık & Kapalı Erişimli Yayınlar
Permanent URI for this communityhttps://hdl.handle.net/11727/10752
Browse
2 results
Search Results
Item Applications of Deep Learning Techniques to Wood Anomaly Detection(2022) Celik, Yaren; Guney, Selda; Dengiz, Berna; Xu, J; Altiparmak, F.; Hassan, MHA; Marquez, FPGWood products and structures have an important place in today's industry. They are widely used in many fields. However, there are various difficulties in production systems where wood raw material is under many processes. Some difficulty and complexity of production processes result in high variability of raw materials such as a wide range of visible structural defects that must be checked by specialists on line or of line. These issues are not only difficult and biased in manual processes, but also less effective and misleading. To overcome the drawbacks of the manual quality control processes, machine vision-based inspection systems are in great of interest recently for quality control applications. In this study, the wood anomaly has been detected by using deep learning. As it will be a distinction-based method on image processing, the Convolution Neural Network (CNN), which is one of the most suitable methods, has been used for anomaly detection. In addition, it will be tried to obtain the most suitable one among different CNN architectures such as ShuffleNet, AlexNet, GoogleNet for the problem. MobileNet, SqueezeNet, GoogleNet, ShuffleNet among considered methods show promising results in classifying normal and abnormal wood products.Item Obesity Level Estimation based on Machine Learning Methods and Artificial Neural Networks(2021) Celik, Yaren; Guney, Selda; Dengiz, BernaObesity is a growing societal and public health problem starting from 1980 that needs more attention. For this reason, new studies are emerging day by day, including those looking for obesity in children, especially the impact factors, and how to predict the emergence of the situation under these factors. In this study, different classification methods were applied for the estimation of obesity levels. Based on the evaluation criteria, the results were compared for different machine learning methods. When the Cubic SVM method was applied by selecting the appropriate features specific to the problem, 97.8% accuracy was obtained.