Teknik Bilimler Meslek Yüksekokulu / Vocational School of Technical Sciences
Permanent URI for this collectionhttps://hdl.handle.net/11727/2031
Browse
Item Classification of acoustic signals with new feature: Fibonacci space (FSp)(2019) Ankishan, Haydar; 0000-0002-6240-2545; AAH-4421-2019In this study, a new feature and feature space (FSp) are introduced by using the approach of Fibonacci series formation. The results are presented as two experimental studies. The nine groups of acoustic signals and pathological human voices are investigated in the first and second experiments, respectively. Convolutional Neural Network (CNN) and Multi-Class Support Vector Machines (M-SVMs) are used to figure out the effect of the proposed feature and its FSp on the classification accuracy. It is observed that the proposed feature and its formed space yield significant results for the discrimination of those signals. Experimental studies show that the classification accuracy of test data is increased by 5.3% when the proposed feature is used with CNN and M-SVMs. In addition, each acoustic group is significantly discriminated in both experimental studies. It is concluded that the proposed feature and its space can be used as a temporal feature for different purposes such as automatic speech recognition, pattern recognition, and emotional voice discrimination etc. (C) 2018 Elsevier Ltd. All rights reserved.Item Estimation of heartbeat rate from speech recording with hybrid feature vector (HFV)(2019) Ankishan, Haydar; 0000-0002-6240-2545; AAH-4421-2019This paper introduces a new hybrid feature vector for revealing the relationship between human voice and heartbeat rate (HBR). Various samples of the sustained vowel /a/ for different HBR have been extracted from a database which is created for this study. A convolutional neural network (CNN)-Regression (R), support vector machines (SVMs)-Regression (R), and multiple linear regression (MLR) are used as regression models. The experimental results show that the percentage of predictions within an acceptable error margin has been obtained as 98.92% for CNN-R, 98.70% for SVMs-R and 96.88% for MLR when Forward Sequential is used as a feature selection algorithm. The results also reveal that the CNN-R (root mean square error (RMSE) =0.3909) has produced better prediction values in estimating HBR than those produced by SVMs-R (RMSE=0.4277) and MLR (RMSE =0.4449). As a result, it is seen that the extracted hybrid feature vector provides a novel relationship between human voice and HBR. (C) 2019 Elsevier Ltd. All rights reserved.Item A hybrid measure for the discrimination of the acoustic signals: Feature matrix (FMx)(2019) Anskishan, Haydar; Inam, Sitki Cagdas; 0000-0002-6240-2545; 0000-0003-0820-9186; AAH-4421-2019We introduce a new feature matrix (FMx) to discriminate the acoustic signals with the help of their hybrid characteristics. The FMx has hybrid domain characteristics consisting of feature values such as distributional area (polygonal area), maximum values of the histogram and fundamental frequency of the difference-difference (d2d) vector. To show the performance of the FMx, three different datasets are used together with quadratic discriminant analysis (QDA), multiclass support vector machines (M-SVMs) and convolutional neural networks (CNN). The simulation results show that FMx provides effective and useful information for the discrimination of the signals into subclasses with the help of ReliefF and forward sequential algorithms. In simulations, the test accuracies with QDA, M-SVMs and CNN were obtained as 94.20%, 100% and 100% respectively. So, the results of the simulations support the effectiveness of the FMx for the acoustic signal classification with three different datasets compared to the previous studies. (C) 2019 Elsevier Ltd. All rights reserved.Item Max-Min Space Approach for Acoustic Signal Analysis(2017) Ankishan, Haydar; Baysal, Ugur; 0000-0002-6240-2545; AAH-4421-2019; AAJ-5711-2020Acoustic signals having pathological problem are difficult to discriminate from each other. Despite the presence of many features, the difficulties arise from the chaotic and nonlinear nature of these voices. Unlike the existing features, a new feature and feature space are emphasized in this study. Considering the maximum and minimum values of acoustic signals at certain time intervals, the relation between them is revealed and Max-Min space is created. Experimental studies have shown that the space distribution between pathological and normal sounds is completely separated from each other and that the space-scattering field sizes are different from each other. As a result of the studies, a time-based feature is introduced which allows the separation of chaotic and nonlinear acoustic signals in the literature.Item A New Approach for Estimation of Heart Beat Rates from Speech Recordings(2017) Ankishan, Haydar; Baysal, Ugur; 0000-0002-6240-2545; AAH-4421-2019; AAJ-5711-2020Today, people are able to have information about their mental state, behavior, and health status in some issues from the features of the voices. The study involves calculating the heart rates of people using nonlinear equations with the help of the features of sound recordings. The model proposed for the study consists of the four inputs of the difference equation parameters which change with constant and variable sound features. When the experimental studies were examined, it was observed that the heart rate could be predicted with an accuracy of 89.76% by using 10s sound recordings. With the proposed equation, it is observed that the heart beat rate is related to the speech features, can be calculated these features with minimal error rate and also the nonlinear equation is presented in the literature.Item A New Approach for the Acoustic Analysis of the Speech Pathology(2017) Ankishan, Haydar; 0000-0002-6240-2545; AAH-4421-2019Voice disorders are a common physical problem that can be encountered today and can cause serious problems in the long term. It is necessary to analyze the voice and extract its characteristics correctly so that it can be treated. In some cases, due to their sound characteristics, they do not differ from each other characteristics exactly, and today's systems do not yet have the ability to make correct decisions. This study has taken into account those evident which from voice disturbances and tries to the analysis of these disorders by means of previously unused attributes with the help of classifier (SVMs). In this study, after the sounds are modeled with LPC and MFCC, disorder analysis is performed on the obtained signals. In the results obtained from experimental studies, it has been determined that 100% of the patients with four different diseases can be decomposed together with the used nonlinear features.Item A New Portable Device for the Snore/Non-Snore Classification(2017) Ankishan, Haydar; Tuncer, A. Turgut; 0000-0002-6240-2545; AAH-4421-2019Snoring is widely known as a disease. The aim of this paper is to introduce and validate our newly developed snoring detection device to identify automatically snore and non-snore sounds using a nonlinear analysis technique. The developed device can analyze chaotic features of a snore related sounds such as entropy, Largest Lyapunov Exponents (LLEs) and also has the data classification ability depending on the feature values. We report that the developed snoring detection device with proposed automatic classification method could achieve an accuracy of 94.38% for experiment I and 82.02 for experiment II when analyzing snore and non-snore sounds from 22 subjects. This study revealed the efficacy of our newly developed snoring detection device and indicated that it may be used at home an alternative to diagnose snore related sounds. It is anticipated that our findings will contribute to the development of an automated snore analysis system to be used in sleep studies.