Wos Kapalı Erişimli Yayınlar
Permanent URI for this collectionhttps://hdl.handle.net/11727/10753
Browse
2 results
Search Results
Item The Use of Petri Nets in Performance Analysis of Flexible Manufacturing Cell(2022) Bulca, Fatima Busra; Ic, Yusuf Tansel; Yurdakul, MustafaA Flexible Manufacturing Cell (FMC) is a system that consists of computer-integrated machines, automatic material handling systems, and robots. It produces different part types with minimal worker involvement. Many different methods, such as queuing systems and simulation models, have been applied in FMC modeling in the literature. This study aims to use Petri Nets (PN) in modelling complex FMCs. The study is carried out in the FMC located in the Advanced Manufacturing Systems Laboratory of Baskent University. The FMC consists of a CNC machining center, a material handling robot and a pallet, which has three work-piece carriage capacities. Processing times of FMC elements may vary due to reasons (the power usage performance, air supply efficiency, electrical power efficiency, etc.) arising from the mechanical structure of the system. This uncertainty needs to be taken into account when modeling the system. In this study, the uncertain (fuzzy) processing times associated with the transitions were caused by the mechanical structure of the system. In order to compare with the newly developed fuzzy models, the system was first modeled using Transition Time Petri Nets (TTPN), in which the running times associated with the transition times take precise values. On the other hand, for handling fuzzy values of the actual operating times in the FMC, two models namely, Partial-Fuzzy Transition Time Petri Nets (Partial-FTTPN) and Fuzzy Transition Time Petri Nets (FTTPN) are developed. The results of the three models are compared to analyze the benefits of combining "time uncertainties" resulting from the natural behavior of FMCs.Item Analysis of the manufacturing flexibility parameters with effective performance metrics: a new interactive approach based on modified TOPSIS-Taguchi method(2022) Ic, Yusuf Tansel; Sasmaz, Turgut; Yurdakul, Mustafa; Dengiz, Berna; 0000-0001-9274-7467; AGE-3003-2022Flexibility is one of the most important strategy parameters to achieve a long-term successful performance for a manufacturing company. Studies in the literature aim to operate a manufacturing system at optimum levels of flexibility parameters under its own manufacturing environment. This study aims to present an interactive analysis framework based on TOPSIS and Taguchi parameter design principles for investigating the effects of different levels of flexibility parameters on the performance of a flexible manufacturing cell (FMC). The main performance metric used in this study is manufacturing lead time. Other important metrics to evaluate quality control and inspection policies are also investigated in this study. To conclude, a combined model of an interactive approach based on TOPSIS and Taguchi methods are used to assess the effectiveness of the flexibility parameters for a FMC.