Wos Kapalı Erişimli Yayınlar
Permanent URI for this collectionhttps://hdl.handle.net/11727/10753
Browse
2 results
Search Results
Item A novel electroencephalography based approach for Alzheimer's disease and mild cognitive impairment detection(2021) Oltu, Burcu; Aksahin, Mehmet Feyzi; Kibaroglu, Seda; 0000-0002-3964-268X; AAJ-2956-2021Background and objective: Alzheimer's disease (AD) is characterized by cognitive, behavioral and intellectual deficits. The term mild cognitive impairment (MCI) is used to describe individuals whose cognitive impairment departing from their expectations for the age that does not interfere with daily activities. To diagnose these disorders, a combination of time-consuming, expensive tests that has difficulties for the target population are evaluated, moreover, the evaluation may yield subjective results. In the presented study, a novel methodology is developed for the automatic detection of AD and MCI using EEG signals. Methods: This study analyzed the EEGs of 35 subjects (16 MCI, 8 AD, 11 healthy control) with the developed algorithm. The algorithm consists of 3 methods for analysis, discrete wavelet transform(DWT), power spectral density (PSD) and coherence. In the first approach, DWT is applied to the signals to obtain major EEG sub-bands, afterward, PSD of each sub-band is calculated using Burg's method. In the second approach, interhemispheric coherence values are calculated. The variance and amplitude summation of each sub-bands' PSD and the amplitude summation of the coherence values corresponding to the major sub-bands are determined as features. Bagged Trees is selected as a classifier among the other tested classification algorithms. Data set is used to train the classifier with 5-fold cross-validation. Results: As a result, accuracy, sensitivity, and specificity of 96.5%, 96.21%, 97.96% are achieved respectively. Conclusion: In this study, we have investigated whether EEG can provide efficient clues about the neuropathology of Alzheimer's Disease and mild cognitive impairment for early and accurate diagnosis. Accordingly, a decision support system that produces reproducible and objective results with high accuracy is developed.Item Detection of multiple sclerosis from photic stimulation EEG signals(2021) Karaca, Busra Kubra; Aksahin, Mehmet Feyzi; Ocal, RuhsenBackground: Multiple Sclerosis (MS) is characterized as a chronic, autoimmune and inflammatory disease of the central nervous system. Early diagnosis of MS is of great importance for the treatment and course of the disease. In addition to the many methods, cost-effective and non-invasive electroencephalogram signals may contribute to the pre-diagnosis of MS. Objectives: The aim of this paper is to classify male subjects who have MS and who are healthy control using photic stimulation electroencephalogram signals. Methods: Firstly the continuous wavelet transformation (CWT) method was applied to electroencephalogram signals under photic stimulation with 5Hz, 10Hz, 15Hz, 20Hz, and 25Hz frequencies. The sum, maximum, minimum and standard deviation values of absolute CWT coefficients, corresponding to "1-4 Hz" and "4-13 Hz" frequency ranges, were extracted in each stimulation frequency region. The ratios of these values obtained from the frequency ranges "1-4Hz" and "4-13Hz" was decided as features. Finally, various machine learning classifiers were evaluated to test the effectivity of determined features. Results: Consequently, the overall accuracy, sensitivity, specificity and positive predictive value of the proposed algorithm were 80 %, 72.7 %, 88.9 %, and 88.9 %, respectively by using the Ensemble Subspace k-NN classifier algorithm. Conclusions: The results showed how photic stimulation electroencephalogram signals can contribute to the prediagnosis of MS.