PubMed İndeksli Yayınlar Koleksiyonu

Permanent URI for this collectionhttps://hdl.handle.net/11727/4810

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Importance of Systematic Right Ventricular Assessment in Cardiac Resynchronization Therapy Candidates: A Machine Learning Approach
    (2021) Galli, Elena; Le Rolle, Virginie; Smiseth, Otto A.; Duchenne, Jurgen; Aalen, John M.; Larsen, Camilla K.; Sade, Elif A.; Hubert, Arnaud; Anilkumar, Smitha; Penicka, Martin; Linde, Cecilia; Leclercq, Christophe; Hernandez, Alfredo; Voigt, Jens-Uwe; Donal, Erwan; 33422667
    Background: Despite all having systolic heart failure and broad QRS intervals, patients screened for cardiac resynchronization therapy (CRT) are highly heterogeneous, and it remains extremely challenging to predict the impact of CRT devices on left ventricular function and outcomes. The aim of this study was to evaluate the relative impact of clinical, electrocardiographic, and echocardiographic data on the left ventricular remodeling and prognosis of CRT candidates by the application of machine learning approaches. Methods: One hundred ninety-three patients with systolic heart failure receiving CRT according to current recommendations were prospectively included in this multicenter study. A combination of the Boruta algorithm and random forest methods was used to identify features predicting both CRT volumetric response and prognosis. Model performance was tested using the area under the receiver operating characteristic curve. The k-medoid method was also applied to identify clusters of phenotypically similar patients. Results: From 28 clinical, electrocardiographic, and echocardiographic variables, 16 features were predictive of CRT response, and 11 features were predictive of prognosis. Among the predictors of CRT response, eight variables (50%) pertained to right ventricular size or function. Tricuspid annular plane systolic excursion was the main feature associated with prognosis. The selected features were associated with particularly good prediction of both CRT response (area under the curve, 0.81; 95% CI, 0.74-0.87) and outcomes (area under the curve, 0.84; 95% CI, 0.75-0.93). An unsupervised machine learning approach allowed the identification of two phenogroups of patients who differed significantly in clinical variables and parameters of biventricular size and right ventricular function. The two phenogroups had significantly different prognosis (hazard ratio, 4.70; 95% CI, 2.1-10.0; P < .0001; log-rank P < .0001). Conclusions: Machine learning can reliably identify clinical and echocardiographic features associated with CRT response and prognosis. The evaluation of both right ventricular size and functional parameters has pivotal importance for the risk stratification of CRT candidates and should be systematically performed in patients undergoing CRT. (J Am Soc Echocardiogr 2021;34:494-502.)
  • Thumbnail Image
    Item
    Rational and design of EuroCRT: an international observational study on multi-modality imaging and cardiac resynchronization therapy
    (2017) Sade, Elif; Donal, Erwan; Delgado, Victoria; Magne, Julien; Bucciarelli-Ducci, Chiara; Leclercq, Christophe; Cosyns, Bernard; Sitges, Marta; Edvardsen, Thor; Stankovic, Ivan; Agricola, Eustachio; Galderisi, Maurizio; Lancellotti, Patrizio; Hernandez, Alfredo; Plein, Sven; Muraru, Denisa; Schwammenthal, Ehud; Hindricks, Gerhard; Popescu, Bogdan A.; Habib, Gilbert; 28329299
    Aims Assessment of left ventricular (LV) volumes and ejection fraction (LVEF) with cardiac imaging is important in the selection of patients for cardiac resynchronization therapy (CRT). Several observational studies have explored the role of imaging-derived LV dyssynchrony parameters to predict the response to CRT, but have yielded inconsistent results, precluding the inclusion of imaging-derived LV dyssynchrony parameters in current guidelines for selection of patients for CRT. Methods The EuroCRT is a large European multicentre prospective observational study led by the European Association of Cardiovascular Imaging. We aim to explore if combing the value of cardiac magnetic resonance (CMR) and echocardiography could be beneficial for selecting heart failure patients for CRT in terms of improvement in long-term survival, clinical symptoms, LV function, and volumes. Speckle tracking echocardiography will be used to assess LV dyssynchrony and wasted cardiac work whereas myocardial scar will be assessed with late gadolinium contrast enhanced CMR. All data will be measured in core laboratories. The study will be conducted in European centres with known expertise in both CRT and multimodality cardiac imaging.