Scopus İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/11727/4809
Browse
3 results
Search Results
Item Detection of COVID-19 by Machine Learning Using Routine Laboratory Tests(2021) Cubukcu, Hikmet Can; Topcu, Deniz Ilhan; Bayraktar, Nilufer; Gulsen, Murat; Sari, Nuran; Arslan, Ayse Hande; 0000-0002-1219-6368; 0000-0002-7886-3688; 34791032; E-3717-2019; Y-8758-2018Objectives The present study aimed to develop a clinical decision support tool to assist coronavirus disease 2019 (COVID-19) diagnoses with machine learning (ML) models using routine laboratory test results. Methods We developed ML models using laboratory data (n = 1,391) composed of six clinical chemistry (CC) results, 14 CBC parameter results, and results of a severe acute respiratory syndrome coronavirus 2 real-time reverse transcription-polymerase chain reaction as a gold standard method. Four ML algorithms, including random forest (RF), gradient boosting (XGBoost), support vector machine (SVM), and logistic regression, were used to build eight ML models using CBC and a combination of CC and CBC parameters. Performance evaluation was conducted on the test data set and external validation data set from Brazil. Results The accuracy values of all models ranged from 74% to 91%. The RF model trained from CC and CBC analytes showed the best performance on the present study's data set (accuracy, 85.3%; sensitivity, 79.6%; specificity, 91.2%). The RF model trained from only CBC parameters detected COVID-19 cases with 82.8% accuracy. The best performance on the external validation data set belonged to the SVM model trained from CC and CBC parameters (accuracy, 91.18%; sensitivity, 100%; specificity, 84.21%). Conclusions ML models presented in this study can be used as clinical decision support tools to contribute to physicians' clinical judgment for COVID-19 diagnoses.Item Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm approaches(2020) Beyaz, Salih; Acici, Koray; Sumer, Emre; 0000-0002-5788-5116; 32584712; K-8820-2019Objectives: This study aims to detect frontal pelvic radiograph femoral neck fracture using deep learning techniques. Patients and methods: This retrospective study was conducted between January 2013 and January 2018. A total of 234 frontal pelvic X-ray images collected from 65 patients (32 males, 33 females; mean age 74.9 years; range, 33 to 89 years) were augmented to 2106 images to achieve a satisfactory dataset. A total of 1,341 images were fractured femoral necks while 765 were non-fractured ones. The proposed convolutional neural network (CNN) architecture contained five blocks, each containing a convolutional layer, batch normalization layer, rectified linear unit, and maximum pooling layer. After the last block, a dropout layer existed with a probability of 0.5. The last three layers of the architecture were a fully connected layer of two classes, a softmax layer and a classification layer that computes cross entropy loss. The training process was terminated after 50 epochs and an Adam Optimizer was used. Learning rate was dropped by a factor of 0.5 on every five epochs. To reduce overfitting, regularization term was added to the weights of the loss function. The training process was repeated for pixel sizes 50x50, 100x100, 200x200, and 400x400. The genetic algorithm (GA) approach was employed to optimize the hyperparameters of the CNN architecture and to minimize the error after testing the model created by the CNN architecture in the training phase. Results: Performance in terms of sensitivity, specificity, accuracy, F1 score, and Cohen's kappa coefficient were evaluated using five-fold cross validation tests. Best performance was obtained when cropped images were rescaled to 50x50 pixels. The kappa metric showed more reliable classifier performance when 50x50 pixels image size was used to feed the CNN. The classifier performance was more reliable according to other image sizes. Sensitivity and specificity rates were computed to be 83% and 73%, respectively. With the inclusion of the GA, this rate increased by 1.6%. The detection rate of fractured bones was found to be 83%. A kappa coefficient of 55% was obtained, indicating an acceptable agreement. Conclusion: This experimental study utilized deep learning techniques in the detection of bone fractures in radiography. Although the dataset was unbalanced, the results can be considered promising. It was observed that use of smaller image size decreases computational cost and provides better results according to evaluation metrics.Item A brief history of artificial intelligence and robotic surgery in orthopedics & traumatology and future expectations(2020) Beyaz, Salih; 0000-0002-5788-5116; 32962606; K-8820-2019Recently. the rate of the production and renewal of information makes it almost impossible to be updated. It is quite difficult to process and interpret large amounts of data by human beings. Unlimited memory capacities. learning abilities, artificial intelligence (AI) applications, and robotic surgery techniques cause orthopedic surgeons to be concerned about losing their jobs. The idea of AI. which was first introduced in 1956. has evolved over time by revealing deep learning and evolutionary plexus that can mimic the human neuron cell. Image processing is the leading improvement in developed algorithms. Theoretically. these algorithms appear to be quite successful in interpreting medical images and orthopedic decision support systems for preoperative evaluation. Robotic surgeons have emerged as significant competitors in carrying out the taken decisions. The first robotic applications of orthopedic surgery started in 1992 with the ROBODOC system. Applications started with hip arthroplasty continued with knee arthroplasty. Publications indicate that problems such as blood loss and infection caused by the long operation time in the early stages have been overcome in time with the help of learning systems. Comparative studies conducted with humans indicate that robots are better than humans in providing limb lengthening, patient satisfaction, and cost. As in all new technologies, the developments in both AI applications and robotics surgery indicate that technology is in favor in terms of cost/benefit analyses. Although studies indicate that new technologies are more successful than humans, the replacement of technology with experience and long-term results with traditional methods will not be observed in the near future.