Scopus İndeksli Yayınlar Koleksiyonu

Permanent URI for this collectionhttps://hdl.handle.net/11727/4809

Browse

Search Results

Now showing 1 - 10 of 12
  • Item
    A Self-tuning Heuristic for the Design of Communication Networks
    (2015) Dengiz, Berna; Alabas-Uslu, Cigdem
    This paper addresses the design of communication networks that has a large application area. The problem is to design a minimum cost network subject to a given reliability level. Complexity of the problem is twofold: (1) finding a minimum-cost network topology that every pair of nodes can communicate with each other and (2) computing overall reliability to provide the reliability constraint. Over the last two decades, metahemistic algorithms have been widely applied to solve this problem due to its NP-hardness. In this study, a self-tuning heuristic (STH), which is a new approach free from parameter tuning, is applied to the design of communication networks. Extensive computational results confirm that STH generates superior solutions to the problem in comparison to some well-known local search metaheuristics, and also more sophisticated metaheuristics proposed in the literature. The practical advantage of STH lies in both its effectiveness and simplicity in application to the design problem.
  • Item
    A Self-adaptive Local Search Algorithm for the Classical Vehicle Routing Problem
    (2011) Alabas-Uslu, Cigdem; Dengiz, Berna
    The purpose of this study is introduction of a local search heuristic free from parameter tuning to solve classical vehicle routing problem (VRP). The VRP can be described as the problem of designing optimal delivery of routes from one depot to a number of customers under the limitations of side constraints to minimize the total traveling cost. The importance of this problem comes from practical as well as theoretical point of view. The proposed heuristic, self-adaptive local search (SALS), has one generic parameter which is learnt throughout the search process. Computational experiments confirm that SALS gives high qualified solutions to the VRP and ensures at least an average performance, in terms of efficiency and effectiveness, on the problem when compared with the recent and sophisticated approaches from the literature. The most important advantage of the proposed heuristic is the application convenience for the end-users. SALS also is flexible that can be easily applied to variations of VRP. (C) 2011 Elsevier Ltd. All rights reserved.
  • Item
    A General Neural Network Model for Estimating Telecommunications Network Reliability
    (2009) Altiparmak, Fulya; Dengiz, Berna; Smith, Alice E.; 0000-0003-1730-4214; 0000-0001-8808-0663; AAF-7020-2021; AAK-2318-2021
    This paper puts forth a new encoding method for using neural network models to estimate the reliability of telecommunications networks with identical link reliabilities. Neural estimation is computationally speedy, and can be used during network design optimization by an iterative algorithm such as tabu search, or simulated annealing. Two significant drawbacks of previous approaches to using neural networks to model system reliability are the long vector length of the inputs required to represent the network link architecture, and the specificity of the neural network model to a certain system size. Our encoding method overcomes both of these drawbacks with a compact, general set of inputs that adequately describe the likely network reliability. We computationally demonstrate both the precision of the neural network estimate of reliability, and the ability of the neural network model to generalize to a variety of network sizes, including application to three actual large scale communications networks.
  • Item
    A cross entropy approach to design of reliable networks
    (2009) Dengiz, Berna; Altiparmak, Fulya; 0000-0003-1730-4214; AAF-7020-2021
    One of the most important parameters determining the performance of communication networks is network reliability. The network reliability strongly depends on not only topological layout of the communication networks but also reliability and availability of the communication facilities. The selection of optimal network topology is an NP-hard problem so that computation time of enumeration-based methods grows exponentially with network size. This paper presents a new solution approach based on cross-entropy method, called NCE, to design of communication networks. The design problem is to find a network topology with minimum cost such that all-terminal reliability is not less than a given level of reliability. To investigate the effectiveness of the proposed NCE, comparisons with other heuristic approaches given in the literature for the design problem are carried out in a three-stage experimental study. Computational results show that NCE is an effective heuristic approach to design of reliable networks. (C) 2008 Elsevier B.V. All rights reserved.
  • Item
    Analysis of the Robustness of the Operational Performance Using a Combined Model of the Design of Experiment and Goal Programming Approaches for a Flexible Manufacturing Cell
    (2023) Ic, Yusuf Tansel; Yurdakul, Mustafa; Dengiz, Berna; Sasmaz, Turgut
    A combined model of a 2(k) design of experiment (DOE) and goal programming (GP) approaches is presented to determine optimum levels of input variables and analyze their robustness for a multiobjective performance of a flexible manufacturing cell (FMC) in this study. Two main performance metrics, namely, manufacturing lead time (MLT) and surface roughness (SR), are considered performance outputs for the FMC. Machine sequence, robot speed, tool type, and material type are selected as the four input variables on the input side of the proposed model. The study shows that even with a limited number of experiments, one can determine optimum input levels for the multiobjective performance of the FMC and determine their robustness.
  • Item
    A Multi-Objective Mathematical Model for Level of Repair Analysis with Lead Times and Multi-Transportation Modes
    (2022) Bicakci, Ismail; Ic, Yusuf Tansel; Karasakal, Esra; Dengiz, Berna; https://orcid.org/0000-0001-9274-7467; AGE-3003-2022
    In the event of failure of the product, level of repair analysis (LORA) is used to determine (1) whether the defective component should be discarded or repaired and (2) where this repair is made. In the literature, these repair operations are made with the aim of minimizing the total life cycle cost of the product. In this paper, we develop a multi-objective decision model that minimizes both the repair time (affected by lead times) and the repair costs. Our proposed model also considers the movement of the defective components to be performed by multiple transportation modes such as highway, railway, and airway. We use the epsilon constraint method to generate the Pareto frontier and analyze the trade-off between total repair costs and total repair time. We demonstrate the approach on an example problem.
  • Item
    Analysis of the manufacturing flexibility parameters with effective performance metrics: a new interactive approach based on modified TOPSIS-Taguchi method
    (2022) Ic, Yusuf Tansel; Sasmaz, Turgut; Yurdakul, Mustafa; Dengiz, Berna; 0000-0001-9274-7467; AGE-3003-2022
    Flexibility is one of the most important strategy parameters to achieve a long-term successful performance for a manufacturing company. Studies in the literature aim to operate a manufacturing system at optimum levels of flexibility parameters under its own manufacturing environment. This study aims to present an interactive analysis framework based on TOPSIS and Taguchi parameter design principles for investigating the effects of different levels of flexibility parameters on the performance of a flexible manufacturing cell (FMC). The main performance metric used in this study is manufacturing lead time. Other important metrics to evaluate quality control and inspection policies are also investigated in this study. To conclude, a combined model of an interactive approach based on TOPSIS and Taguchi methods are used to assess the effectiveness of the flexibility parameters for a FMC.
  • Item
    The development of a reviewer selection method: a multi-level hesitant fuzzy VIKOR and TOPSIS approaches
    (2021) Kocak, Serdar; Ic, Yusuf Tansel; Atalay, Kumru Didem; Sert, Mustafa; Dengiz, Berna; 0000-0001-9274-7467; AGE-3003-2022
    This paper proposes a new approach for the selection of reviewers to evaluate research and development (R&D) projects using a new integrated hesitant fuzzy VIKOR and TOPSIS methodology. A reviewer selection model must have a multi-level framework in which reviewer selection strategies and related objectives guide the second level of the reviewer performance ranking process. The model must measure reviewer performance related to the activities that are necessary for the R&D project evaluation to be successful. A novel model is presented in this paper. In the proposed methodology, the aim is to select a reviewer in a hierarchical decision-making structure. The selection criteria values and their weights were obtained using the hesitant fuzzy VIKOR method. For the selection of a suitable reviewer, the conventional TOPSIS model was used. We developed a simpler procedure for effectively performing the reviewer selection process. The new approach was tested with a real case study and satisfactory results were obtained. A comparative analysis is also included in the article for illustrative purposes.
  • Item
    A New Multi-Echelon Repair Network Model with Multiple Upstream Locations for Level of Repair Analysis Problem
    (2021) Bicakci, Ismail; Ic, Yusuf Tansel; Karasakal, Esra; Dengiz, Berna; 0000-0001-9274-7467; AGE-3003-2022
    Level of repair analysis (LORA) determines (1) the best decision during a malfunction of each product component; (2) the location in the repair network to perform the decision and (3) the quantity of required resources in each facility. Capital goods have long life cycles and their total life cycle costs are extremely high. LORA, which can be done repeatedly during the life cycle of the product, both at design and product support phase, plays an important role in minimising the total life cycle costs of capital goods. It is mostly applied to systems that operate in different geographical areas and deployed in different regions, which include different subsystems with special technology and expertise, and have a complex product structure. In this study, we propose a new mathematical model to the LORA problem, which is more comprehensive and flexible than the other pure LORA models in the literature. The proposed model uses the multiple upstream approach that allows the transfer of the components from a location in the lower echelon to the predefined locations in the upper echelon and determines the material movement paths between each facility, defining the facilities' locations in the repair network. The performance of the proposed model is tested on benchmark instances and the results are compared with the single upstream model. Computational experiments show that the proposed model is more effective than the single upstream model and reduces the total life cycle costs by 4.85% on average, which is an enormous cost saving when total life cycle costs of capital goods are considered.
  • Item
    Airfoil-slat arrangement model design for wind turbines in fuzzy environment
    (2020) Atalay, Kumru Didem; Dengiz, Berna; Yavuz, Tahir; Koc, Emre; Ic, Yusuf Tansel
    In this study, a multi-element wind turbine blade that consists of NACA 6411 and NACA 4412 leading-edge slat design is investigated computationally. Optimum design parameters of the slatted wind turbine blade leading to maximum value of C-L/C-D related to the turbine power are obtained. In the optimization process, a new fuzzy logic linear programming methodology integrating with fuzzy linear regression and 2D CFD analysis is proposed. The aerodynamic characteristics of the slatted blade are computed by using Incompressible Navier-Stokes equations and k-omega turbulence modeling. Results are compared with the results of linear programming method and direct search optimization method. The computational results reveal that the proposed methodology for performance optimization is more effective than other methods to obtain high-performance value of the C-L/C-D. The maximum value of the C-L/C-D is obtained as 25.1 leading the maximum efficiency of 0.52.