Scopus İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/11727/4809
Browse
Search Results
Item Deep neural network to differentiate brain activity between patients with euthymic bipolar disorders and healthy controls during verbal fluency performance: A multichannel near-infrared spectroscopy study(2022) Alici, Yasemin Hosgoren; Oztoprak, Huseyin; Rizaner, Nahit; Baskak, Bora; Ozguven, Halise Devrimci; 0000-0003-3384-8131; 36088826In this study, we aimed to differentiate between euthymic bipolar disorder (BD) patients and healthy controls (HC) based on frontal activity measured by fNIRS that were converted to spectrograms with Convolutional Neural Networks (CNN). And also, we investigated brain regions that cause this distinction. In total, 29 BD patients and 28 HCs were recruited. Their brain cortical activities were measured using fNIRS while performing letter versions of VFT. Each one of the 24 fNIRS channels was converted to a 2D spectrogram on which a CNN architecture was designed and utilized for classification. We found that our CNN algorithm using fNIRS activity during a VFT is able to differentiate subjects with BD from healthy controls with 90% accuracy, 80% sensitivity, and 100% specificity. Moreover, validation performance reached an AUC of 94%. From our individual channel analyses, we observed channels corresponding to the left inferior frontal gyrus (left-IFC), medial frontal cortex (MFC), right dorsolateral prefrontal cortex (DLPFC), Broca area, and right premotor have considerable activity variation to distinguish patients from HC. fNIRS activity during VFT can be used as a potential marker to classify euthymic BD patients from HCs. Activity particularly in the MFC, left-IFC, Broca's area, and DLPFC have a considerable variation to distinguish patients from healthy controls.Item An Overview of Deep Learning Algorithms and Their Applications in Neuropsychiatry(2021) Guney, Gokhan; Yigin, Busra Ozgode; Guven, Necdet; Colak, Burcin; Alici, Yasemin Hosgoren; Erzin, Gamze; Saygili, Gorkem; 0000-0003-3384-8131; 33888650Deep learning (DL) algorithms have achieved important successes in data analysis tasks, thanks to their capability of revealing complex patterns in data. With the advance of new sensors, data storage, and processing hardware, DL algorithms start dominating various fields including neuropsychiatry. There are many types of DL algorithms for different data types from survey data to functional magnetic resonance imaging scans. Because of limitations in diagnosing, estimating prognosis and treatment response of neuropsychiatric disorders; DL algorithms are becoming promising approaches. In this review, we aim to summarize the most common DL algorithms and their applications in neuropsychiatry and also provide an overview to guide the researchers in choosing the proper DL architecture for their research.